e-olimp 57. Бабочка-санитар

Задача

e-olimp 57. Бабочка-санитар

e-olimp 57. Бабочка-санитар

Школьники, идя из дому в школу или наоборот — со школы домой, любят кушать конфеты. Но, как всегда, это приятное дело иногда имеет неприятные последствия – детки часто выбрасывают обертки на школьном дворе.
Мурзик всегда следил за чистотой школьного двора и ему в этом с радостью помогали бабочки, благодарные за прекрасные фотографии, сделанные им. Бабочки могли использовать собственные крылышки как линзы, причем они могли изменять их фокусное расстояние. Заметив обертку от конфетки, лежавшую на школьном дворе в точке с координатами $X_{1}$ $Y_{2}$, бабочка перелетала в точку с координатами $X_{2}$, $Y_{2}$, $Z_{2}$, расположенную на пути солнечных лучей к обертке и, изменяя фокусное расстояние своих крылышек-линз, сжигали обертку от конфеты.
Какую оптическую силу $D$ имели крылышки-линзы бабочки в этот момент?

Входные данные

В первой строке 2 числа: координаты $X_{1}$, $Y_{1}$ обертки от конфетки. Во второй – 3 числа: координаты $X_{2}$, $Y_{2}$, $Z_{2}$ бабочки в момент сжигания обертки.
Все входные данные целые числа, не превышающие по модулю 1000.

Выходные данные

Единственное число – оптическая сила крылышек-линз D, вычисленная с точностью до 3-х знаков после запятой за правилами математических округлений.

Тесты

ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
10 20
10 20 100
0.010
600 400
300 867 409
0.001
30 50
1000 1000 1000
0.001
60 21
11 44 -7
0.018

Код программы

Решение задачи

$F=\sqrt{(x-x_{1})^{2} + (y-y_{1})^{2} + z^{2}}$ — формула для нахождения расстояния между двумя точками пространства. По этой формуле находим фокусное расстояние между крыльями-линзами и бумажкой. Оптическая сила линзы $\frac{1}{F}$, где $F$ — фокусное расстояние.

Этой строкой кода мы выводим оптическую силу линзы с точностью до трех знаков после запятой.
Условие задачи на e-olimp
Код решения ideon

e-olymp 13. Паук и муха

Задача

В пустой прямоугольной комнате размерами $A \times B \times C$ (длина, ширина, высота) на пол упала уснувшая муха. Паук, находившийся на одной из стен, или на полу комнаты, начал двигаться к ней по кратчайшему пути.

На какое расстояние он при этом переместится?

Входные данные

В первой строке заданы размеры комнаты $A$, $B$, $C$. Во второй строке — координаты мухи $X_1$,$Y_1$ и паука $X_2$, $Y_2$, $Z_2$.

Все входные данные — целые числа, не превышающие $500$.

Выходные данные

Единственное число — расстояние, на которое переместится паук, вычисленное с точностью до 2-х знаков после запятой.

Тесты

Входные данные Выходные данные
$3$ $4$ $8$
$0$ $0$ $3$ $4$ $0$
$5.00$
$2$ $2$ $8$
$1$ $1$ $2$ $1$ $4$
$5.00$
$6$ $4$ $3$
$5$ $1$ $0$ $2$ $1$
$6.08$
$30$ $60$ $27$
$13$ $21$ $8$ $0$ $17$
$38.33$
$40$ $40$ $40$
$10$ $5$ $8$ $40$ $37$
$72.03$

Код программы

Решение задачи

Суть решения задачи заключается в переходе от трехмерного пространства комнаты к двумерному с помощью «развёртки» комнаты на координатную плоскость.

Переведя координаты паука в комнате в его новые координаты в двумерном пространстве, все, что нам остается сделать — вычислить кратчайшее расстояние между двумя точками на плоскости с помощью функции $distance$.
В простейшем случае, если паук находится на полу комнаты, т.е. его координата $Z2$ нулевая, координаты паука $X2$ и $Y2$ в точности описывают его положение в координатной плоскости развёртки, и преобразовывать их не требуется.
В противном случае отдельно рассматриваем варианты расположения паука на каждой из стен. В зависимости от того, на какой стене он находится, мы изменяем координаты в соответствии с развёрткой комнаты и находим расстояние от паука до мухи с помощью функции $distance$.
В случае местонахождения паука в каком-либо из углов комнаты, но не на полу, мы должны рассмотреть два варианта его положения в развёртке и найти минимальное из них.

Ссылки

Условие задачи на сайте e-olymp
Код решения задачи

e-olymp 48. Красные и синие квадраты

Задача

Петя и Вася готовились к контрольной работе по теме ”Периметр и площадь фигур”. Петя нарисовал геометрическую фигуру, закрасив на листе в клеточку некоторые клеточки синим цветом, а Вася вычислял периметр образованной фигуры и дорисовывал максимальное количество квадратов красным цветом таким образом, чтобы периметр новообразованной фигуры оставался таким же.
Напишите программу, которая по заданным координатам закрашенных синих квадратов найдет максимальное количество красных квадратов, которое можно дорисовать так, чтобы периметр новообразованной фигуры не изменился.

Входные данные

В первой строке находится количество синих квадратов $n$ ($0 < n < 40404$). Далее идут $n$ строк, каждая из которых содержит координаты $x$, $y$ ($-101 \leq x, y \leq 101$) левых нижних углов синих квадратов.

Каждый синий квадрат имеет хотя бы одну общую точку хотя бы с одним другим синим квадратом. Фигура, образованная синими квадратами, является связной.

Выходные данные

Вывести количество красных квадратов.

Тесты

Входные данные
Выходные данные
$3$
$1$ $2$
$2$ $1$
$3$ $1$
$3$
$3$
$1$ $1$
$2$ $2$
$1$ $3$
$6$
$10$
$1$ $1$
$2$ $2$
$1$ $3$
$2$ $4$
$1$ $5$
$2$ $6$
$1$ $7$
$2$ $8$
$1$ $9$
$2$ $10$
$90$

Код программы

Решение задачи

Для начала, нужно понять, что для каждой связной фигуры, составленной из одинаковых квадратов, существует как минимум один прямоугольник с таким-же периметром, что и фигура. Тогда каждую фигуру можно будет достраивать до прямоугольника, сохраняя периметр.

Чтобы доказать это, пусть сторона квадрата равна $1$. Тогда периметр фигуры, составленной из этих квадратов, всегда будет делится на $2$ (это легко понять, строя такие фигуры на листке бумаги: добавление каждого нового квадрата в фигуру может изменить периметр только на $-4, -2, 0, 2, 4$). А так как периметр прямоугольника равен $2 * (a + b)$, где $a, b$ – стороны прямоугольника, то для существования прямоугольника с таким-же периметром должно выполняться условие $\forall p \in \mathbb{N} , p > 2 \rightarrow \exists a,b \in \mathbb{N} : 2p = 2*( a + b )$. Очевидно, что условие действительно выполняется для всех $p>2$.

Запишем нашу фигуру в массив squares. После чего посчитаем ее периметр: каждый непустой квадратик фигуры добавляет $1$ к периметру за каждую пустую клеточку слева, справа, сверху или снизу от него. Далее будем искать все подходящие прямоугольники, записывая максимальную площадь в переменную max: перебирая значения первой стороны $j$, высчитываем через периметр вторую сторону $i = \displaystyle \frac{p}{2} — j$. Площадь будем считать, как разницу площади прямоугольника и изначальной фигуры (число $n$ равно площади фигуры, потому что площадь каждого квадрата равна $1$).
В конце, выводим разницу максимальной площади и площади изначальной фигуры (площадь изначальной фигуры равна $n$, ведь площадь каждого квадрата равна $1$).

Ссылки

Условие задачи на e-olymp
Код решения на ideone.com

e-olymp 72. Дорога домой

Задача

Бедный Иа

Бедный Иа

Возвращаясь домой, после захватывающей игры в гостях у Винни Пуха, ослик Иа решил немного прогуляться. Поскольку во время прогулки он все время думал о своем приближавшемся дне рождения, то не заметил, как заблудился. Известно, что ослик во время прогулки всегда передвигается по определенному алгоритму: в начале прогулки он всегда начинает движение на северо-восток, делает при этом один шаг (перемещаясь при этом в точку [latex]\left \langle 1,1 \right \rangle[/latex]), потом меняет направление и двигается на юго-восток, далее на юго-запад, на северо-запад и так далее. При каждом изменении направления ослик всегда делает на [latex]n[/latex] шагов больше, чем было сделано до изменения направления.

Когда ослик все же решил возвратится домой, то обнаружил, что зашел глубоко в лес. Надвигалась ночь и Иа захотел поскорее попасть домой. Помогите узнать, удастся ли сегодня ослику попасть домой до заката солнца, если известно, что солнце зайдет через [latex]t[/latex] часов, а скорость передвижения ослика [latex]v[/latex] шагов в час (длина шага у ослика постоянна). Известно, что движение ослик начинал из точки с координатами [latex]\left \langle 0,0 \right \rangle[/latex], а его дом расположен в точке [latex]\left \langle x_{h},y_{h} \right \rangle[/latex], и направление движения он менял [latex]k[/latex] раз.

Входные данные

В первой строке задано четыре целых числа [latex]n[/latex], [latex]k[/latex], [latex]t[/latex], [latex]v[/latex] [latex](0\leq n,k,t,v\leq 100)[/latex] . Во второй строке размещено два целых числа [latex]x_{h}[/latex], [latex]y_{h}[/latex] – координаты домика ослика [latex](-10^5\leq x_{h}, y_{h}\leq 10^5)[/latex] .

Выходные данные

Вывести Good night Ia, если ослик успеет дойти домой до заката солнца или Poor Ia в противоположном случае.

Тесты

Входные данные
Выходные данные
[latex]1[/latex] [latex]5[/latex] [latex]3[/latex] [latex]2[/latex]

 

[latex]5[/latex] [latex]7[/latex]
Good night Ia
[latex]5[/latex] [latex]2[/latex] [latex]3[/latex] [latex]9[/latex]

 

[latex]15[/latex] [latex]15[/latex]
Good night Ia
[latex]4[/latex] [latex]4[/latex] [latex]3[/latex] [latex]20[/latex]

 

[latex]105[/latex] [latex]-105[/latex]
Poor Ia
[latex]3[/latex] [latex]4[/latex] [latex]2[/latex] [latex]3[/latex]

 

[latex]40[/latex] [latex]-20[/latex]
Good night Ia
[latex]1[/latex] [latex]3[/latex] [latex]7[/latex] [latex]2[/latex]

 

[latex]-24[/latex] [latex]0[/latex]
Poor Ia
[latex]1[/latex] [latex]3[/latex] [latex]7[/latex] [latex]2[/latex]

 

[latex]-23[/latex] [latex]0[/latex]
Good night Ia

Первый вариант кода программы

Второй вариант кода программы

Решение задачи

Вариант 1

Разделим решение задачи на две части: поиск местоположения Иа после прогулки и расчет пути домой.
Имеем следующую формулу вычисления вектора нахождения Иа после прогулки:
[latex]\sum\limits_{i=0}^k f(i, n)[/latex], где [latex]n[/latex] — изменение количества шагов Иа в каждой итерации, [latex]k[/latex] — cколько раз он менял движение, и функции:

[latex]f(x,y) = \begin{cases} \left \langle1 + xy, 1 + xy\right \rangle & \textit{if } x\vdots 4 = 0 \\\\ \left \langle1 + xy, (-1) \cdot (1 + xy)\right \rangle & \textit{if } x\vdots 4 = 1 \\\\ \left \langle(-1) \cdot (1 + xy), (-1) \cdot (1 + xy)\right \rangle & \textit{if } x\vdots 4 = 2 \\\\ \left \langle(-1) \cdot (1 + xy), 1 + xy\right \rangle & \textit{if } x\vdots 4 = 3 \end{cases}[/latex]

То есть, результат функции [latex]f(x,y)[/latex] это вектор, на который передвинулся Иа в итерации номер [latex]x[/latex] с изменением шага [latex]y[/latex], а результат [latex]\sum\limits_{i=0}^k f(i, n)[/latex] — это вектор [latex]\left \langle a,b \right \rangle[/latex] местоположения Иа в конце прогулки. Теперь нужно посчитать расстояние между местоположением Иа и его домом. Считаем из вектора [latex]\left \langle a,b \right \rangle[/latex] и вектора [latex]\left \langle x_{h},y_{h} \right \rangle[/latex]:

$$\sqrt{(x_{h} — a)^2 + (y_{h} — b)^2}$$

И считаем максимальное расстояние, которое может пройти Иа до заката солнца. Тут нужно учесть то, что скорость в условии измеряется в шагах в час, а шаг это расстояние между [latex]\left \langle 0,0 \right \rangle[/latex] и [latex]\left \langle 1,1 \right \rangle[/latex], то есть — [latex]\sqrt{2}[/latex].

$$ \sqrt{2} tv$$

Итого, выводим Good night Ia, если [latex]2t^2v^2 \geq (x_{h} — a)^2 + (y_{h} — b)^2[/latex] и Poor Ia в противном случае.

Вариант 2

Если рассмотреть каждое направление спирали, как элемент арифметической прогрессии, то можно следующим образом получить алгоритм решения данной задачи с вычислительной сложностью [latex]O(1)[/latex]. Используем сумму арифметической прогрессии $S = \displaystyle\frac{a_1 + a_m}{2}$, где $a_m = 1+(m-1)d$

Для направления на северо-восток:
$$a_1 = 1, d = 4n \Rightarrow S_{1}=\frac{1 + 1 +4n(m_1-1)}{2}\Rightarrow S_{1} = m_1(1+2n(m_1-1)),$$
где $m_1 = \displaystyle\frac{k+1}{4} + 1,$ если$ (k+1)\vdots 4 >=1$ иначе, $m_1=\displaystyle\frac{k+1}{4}$

Для направления на юго-восток:
$$a_2 = 1+n, d = 4n \Rightarrow S_{2} = m_2(1+n+2n(m_2-1)),$$
где $m_2 = \displaystyle\frac{k+1}{4} + 1,$ если$ (k+1)\vdots 4 >=2$ иначе, $m_2=\displaystyle\frac{k+1}{4}$

Для направления на юго-запад:
$$a_3 = 1+2n, d = 4n \Rightarrow S_{3} = m_3(1+2n+2n(m_3-1)),$$
где $m_3 = \displaystyle\frac{k+1}{4} + 1,$ если$ (k+1)\vdots 4 >=3$ иначе, $m_3=\displaystyle\frac{k+1}{4}$

Для направления на северо-запад:
$$a_4 = 1+3n, d = 4n \Rightarrow S_{4} = m_4(1+3n+2n(m_4-1)),$$
где $m_4 = \displaystyle\frac{k+1}{4} + 1,$ если$ (k+1)\vdots 4 >=4$ иначе, $m_4=\displaystyle\frac{k+1}{4}$

Тогда, для вычисления координат [latex]\left \langle x,y \right \rangle[/latex] воспользуемся следующей формулами:
$$x = S_{1} + S_{2} — S_{3} — S_{4}$$
$$y = S_{1} — S_{2} — S_{3} + S_{4}$$
Последующие вычисления эквивалентны первому варианту решения.

Ссылки

Условие задачи на e-olymp
Код решения первого варианта на ideone.com
Код решения второго варианта на ideone.com

e-olymp 61. Уборка снега

Задача

Зимой, когда дни стают короче, а ночи длиннее, необходимо задуматься об уборке снега с улиц. Поскольку бюджет нашего города очень маленький, у нас в распоряжении только один снегоход. Несмотря на это дороги должны быть прочищены. И каждый раз, когда выпадает много снега, ночью снегоход нашего города выезжает со своего гаража и объезжает весь город, очищая дороги. Какое минимальное время нужно снегоходу, чтобы очистить все проезжие полосы всех дорог и вернуться назад?

При этом известно, что:

  • Снегоход может очищать только одну проезжую полосу дороги за один проход.
  • Все дороги прямые с одной полосой движения в каждом направлении.
  • Снегоход может поворачивать на любом перекрестке в любую сторону, а также может развернуться в тупике.
  • Во время очистки снега снегоход двигается со скоростью 20 км/час, и со скоростью 50 км/час по уже очищенной дороге.
  • Возможность проехать все дороги всегда существует.

Входные данные

Первая строка содержит два числа $x$ и $y$ ($-30000 \leq x, y \leq 30000$) — координаты ангара (в метрах), откуда начинает свое движение снегоход. Далее в каждой отдельной строке заданы координаты (в метрах) начала и конца улиц (по $4$ числа в строке). В городе может быть до $100$ улиц.

Выходные данные

Время в часах и минутах, необходимое для очистки всех дорог и возврата в ангар. Время следует округлить до ближайшей минуты

Тесты

Входные данные Выходные данные
$0$ $0$
$0$ $0$ $-1000$ $2000$
$0$ $0$ $1000$ $2000$
$0:27$
$0$ $1000$
$0$ $0$ $0$ $3000$
$0$ $0$ $1000$ $1000$
$0$ $0$ $3000$ $0$
$3000$ $0$ $3000$ $3000$
$3000$ $3000$ $0$ $3000$
$0$ $3000$ $1000$ $2000$
$3000$ $0$ $2000$ $1000$
$3000$ $3000$ $2000$ $2000$
$1:46$
$-500$ $0$
$-1000$ $0$ $0$ $0$
$0$ $0$ $1000$ $0$
$-1000$ $1000$ $0$ $0$
$-1000$ $1000$ $0$ $2000$
$0$ $2000$ $1000$ $1000$
$1000$ $1000$ $0$ $1000$
$0$ $1000$ $0$ $0$
$0:49$
$1000$ $500$
$-1000$ $0$ $1000$ $0$
$-1000$ $1000$ $1000$ $1000$
$-1000$ $0$ $-1000$ $1000$
$1000$ $0$ $1000$ $1000$
$-1000$ $0$ $1000$ $1000$
$1000$ $0$ $-1000$ $1000$
$-1000$ $1000$ $0$ $2000$
$0$ $2000$ $1000$ $1000$
$1:20$
$500$ $-500$
$0$ $0$ $1000$ $-1000$
$1000$ $-1000$ $2000$ $0$
$2000$ $0$ $3000$ $-1000$
$3000$ $-1000$ $4000$ $0$
$4000$ $0$ $5000$ $-1000$
$5000$ $-1000$ $6000$ $0$
$0$ $0$ $8000$ $0$
$1:39$

Код программы

Решение задачи

Пусть граф $G = \left \langle V, U \right \rangle$ — граф, ребра которого — указанные в задаче дороги, а вершины — перекрестки. Граф $G$ — ориентированный, при чем, в силу того, что все дороги имеют двустороннее движение, из того, что $\left ( v_i, v_j \right ) \in U$ следует, что $\left ( v_j, v_i \right ) \in U.$ Из этого следует, что полустепень захода каждой вершины равна ее полустепени исхода, из чего, по критерию существования Эйлерова цикла, граф $G$ содержит Эйлеров цикл, т.е. существует путь, такой, что снегоход сможет очистить все дороги, пройдя по каждой ровно один раз в каждую сторону, следовательно длина такого пути будет равна удвоенной длине дорог. Снегоход всегда двигается со скоростью $V = 20 \text{км/час} = \frac{1000}{3} \text{м/мин}.$ По каждой из дорог снегоход проезжает два раза, таким образом общее искомое время минутах: $t = \frac{2L}{V} = \frac{3L}{500},$ где $L$ — длина всех дорог.
Замечание. Как видно из алгоритма решения, не имеет значения, где конкретно расположена точка начала движения, главное, чтобы она располагалась на одной из улиц.

Ссылки

Условие задачи на e-olymp

Решение задачи на e-olymp

Код решения