e-olymp 219. Центральное отопление

Задача

Кар Карыч с Пином восемнадцать часов подряд распивали холодные молочные коктейли и закусывали их мороженым. После этого Кар Карыч свалился со страшной простудой, а Пин решил провести в домик своему другу центральное отопление. Расчет количества отопительных приборов необходимо производить строго по ГОСТу 800333-90-06*. Для простоты Пин решил купить простые батареи. Согласно таблице 14.1.3 этого ГОСТа, каждая батарея обогревает определённый объём воздуха — ровно [latex]d[/latex] кубометров. Комната, которую собирается для своего друга обогреть Пин, имеет следующие размеры:

• высота [latex]a[/latex],

• ширина [latex]b[/latex],

• длина [latex]c[/latex].

Определите минимальное количество батарей, которое необходимо купить Пину. Учтите только, что если в домике у Кар Карыча температура будет ниже, чем по ГОСТу, Кар Карыч никогда не поправится.

Входные данные

Четыре целых числа [latex]a, b, c, d (a, b, c \leq 10^{5}, d \leq 2 \cdot 10^{9})[/latex].

Выходные данные

Выведите минимальное количество батарей, которое необходимо купить Пину.

Тесты

# Входные данные Выходные данные
1 2 3 4 2 12
2 4 5 7 3 47
3 75 61 88 50 8052
4 986 764 390 54 5440529
5 1 1 1 2000000 1

Алгортм решения

  1. Находим объём комнаты по заданным сторонам по формуле [latex]V=a \cdot b \cdot c[/latex].
  2. Делим полученный объём на объём, обогреваемый одной батареей.
  3. Округляем при необходимости полученный ответ вверх, чтобы найти минимальное количество батарей.

Округление

Если разделить объём [latex]V[/latex] на [latex]d[/latex] нацело, то в остатке у нас может получиться [latex]0, 1, 2, \ldots , d-1[/latex]. Добавив [latex]d-1[/latex] к объёму [latex]V[/latex] мы получим в делении нацело остатки [latex]d-1, d, d+1, \ldots , 2d-2[/latex]. Первое число [latex]d-1<d[/latex], поэтому при делении нацело оно даёт [latex]0[/latex]. Остальные числа больше либо равны [latex]d[/latex], но меньше [latex]2d[/latex], значит любое из них при делении нацело на [latex]d[/latex] даст [latex]1[/latex].

Условие задачи можно найти на e-olymp
Код решения — ideone

e-olymp 209. Защита от копирования

Условие

Давным-давно, в далекой-далекой галактике, когда еще не вышел мультфильм про смешариков, никто не знал про Гарри Поттера и про Властелина Колец, на далекой-далекой планете жили-были полчища смешариков. Их технологии были настолько совершенны, что они создали машину времени и перенеслись на ней в будущее, на планету «Земля», где одному из них совершенно случайно попалась первая серия «Смешариков». Исследователей эта серия так потрясла, что они предприняли чрезвычайно опасный рейд, в ходе которого им удалось добыть полное собрание серий. Эти серии они увезли на родину, где они стали безумно популярными. К сожалению, мультфильмы были с системой защиты от копирования, а смешарики по своей законопослушной сущности не приспособлены к хакерской деятельности. Поэтому им пришлось обмениваться привезенными с Земли дисками.

Местная поп-звезда Билаш обиделся на такую популярность, к которой он не имел никакого отношения, и решил вернуть все в старое русло. Для этого Билаш хочет рассорить смешариков, чтобы они разделились на два не общающихся между собой лагеря. Для того, чтобы поссорить пару смешариков, Билашу требуется израсходовать 1 у.е. усилий. Но, так как Билаш жутко ленив, он хочет приложить минимум усилий для достижения своей цели. Помогите ему.

Входные данные

Hа первой строке два числа $N(N\leq 100)$ и $M$ — количество смешариков и количество пар смешариков, которые обмениваются мультфильмами. На последующих $M$ строках перечисляются пары чисел $U$ и $V$, означающих, что смешарик U и смешарик V знакомы друг с другом и обмениваются мультфильмами.

Выходные данные

Вывести минимальное число у.е., которое придется затратить Билашу на достижение своей цели.

Тесты

Входные данные Выходные данные
$5$ $5$
$1$ $2$
$3$ $2$
$2$ $4$
$3$ $5$
$2$ $5$
$1$
$5$ $5$
$1$ $3$
$3$ $5$
$5$ $2$
$2$ $4$
$4$ $1$
$2$
$2$ $1$
$2$ $1$
$1$

Код решения

Решение

Зададим связи между смешариками в виде графов, где сами смешарики являются вершинами, смежными в том случае, если они дружат. Тогда задача сводится к нахождению минимального количества ребер, которые необходимо удалить в графе, чтобы разбить его на две не связанные между собою компоненты. Такую постановку задачи полностью решает алгоритм Штор-Вагнера в несколько упрощенном виде, так как нам не нужно знать, какие именно ребра графа надо разорвать, а достаточно подсчитать их количество.

Ссылки

Условие задачи на e-olymp
Код решения на ideone.com

e-olymp 8. Спички

Задача

Какое минимальное количество спичек необходимо для того, чтобы выложить на плоскости [latex]n[/latex] квадратов со стороной в одну спичку? Спички нельзя ломать и класть друг на друга. Вершинами квадратов должны быть точки, где сходятся концы спичек, а сторонами – сами спички.

Напишите программу, которая по количеству квадратов [latex]n[/latex], которое необходимо составить, находит минимальное необходимое для этого количество спичек.

Входные данные

Одно целое число [latex]n[/latex] [latex](1 ≤ n ≤ 10^9)[/latex].

Выходные данные

Вывести минимальное количество спичек, требуемых для составления [latex]n[/latex] квадратов.

Тесты

Входные данные Выходные данные
[latex]1[/latex] [latex]4[/latex]
[latex]2[/latex] [latex]7[/latex]
[latex]4[/latex] [latex]12[/latex]
[latex]7[/latex] [latex]20[/latex]
[latex]150[/latex] [latex]325[/latex]
[latex]10000[/latex] [latex]20200[/latex]
Один квадрат можно составить из [latex]4[/latex] спичек. Два квадрата — из [latex]7[/latex] спичек. Очевидно, что квадраты следует располагать так, чтобы они образовывали прямоугольник, “близкий” к квадрату.
Например, на рисунке 1 мы использовали меньшее количество спичек, чем на рисунке 2, хотя количество квадратов одинаковое:

  1. matches_1
  2. matches_2

Зададим размеры прямоугольника. Пусть [latex]w = \sqrt n[/latex] — его ширина. Округлим значение [latex]w[/latex] к наибольшему целому числу, не превышающему данное. Тогда его длина будет [latex]l = \displaystyle\frac {n} {w}[/latex]. Если округлить значение [latex]l[/latex] к наибольшему целому числу, не превышающему данное, то мы сможем построить лишь те квадраты, которые входят в наш прямоугольник. Округляя же значение [latex]l[/latex] к наименьшему целому числу, которое не меньше данного, мы сможем достроить квадраты, не поместившиеся в наш прямоугольник.
Если отложить вниз количество спичек, равное [latex]w[/latex], и вправо — [latex]l[/latex], получается следующий рисунок (разумеется, количество отложенных спичек меняется в зависимости от [latex]n[/latex]):
matches_3
Очевидно, что достроить треубемые квадраты можно, положив «уголки» из двух спичек, начиная с левого верхнего угла и двигаясь сверху вниз и слева направо.
«Уголок»:
matches_4
Отсюда и получается формула: [latex]k = 2 \cdot n + l + w[/latex], где [latex]k[/latex] — количество спичек, требуемое в задаче.

Ссылки

Условие задачи на e-olymp
Код решения

KM31. Бумажные многоугольники

Задача

Задача из журнала «Квант» №7 1970 г.
Квадратный лист бумаги разрезают по прямой на две части. Одну из полученных частей снова разрезают на две части, и так делают много раз. Какое наименьшее число разрезов r нужно сделать, чтобы среди полученных частей оказалось n k -угольников?

Входные данные:

Количество многоугольников n.
Количество углов многоугольника k.

Выходные данные:

Количество разрезов r.

Пример получения двух шестиугольников за 5 разрезов

Тесты

 Входные данные  Выходные данные
 №  n  k  r
 1  100  20  1699
 2  14  3  13
 3  1  3  1
 4  40  360  14279
 5  2  6  5

Код программы

 

Решение

При каждом разрезе количество кусков бумаги nувеличивается на 1. Общее количество вершин k будет увеличиваться в зависимости от места разреза. Таким образом при разрезе через две стороны общее количество вершин будет увеличиваться на 4. При разрезе через две вершины общее количество вершин увеличивается на 2, а при разрезе через сторону и вершину — на 3.

При k>3 сначала разделим лист на nчетырёхугольников при помощи разрезов через противоположные стороны. На это нам понадобиться n-1 разрезов. Затем можем, при помощи разрезов через соседние стороны, превращать каждый четырехугольник в k — угольник, на что понадобиться k-4 разрезов.Выходит, что на получение n k— угольников нужно сделать не меньше n(k-4)+n-1 разрезов, значит r=n(k-3)-1.

Если же k=3, то нам нужно, наоборот, уменьшить количество вершин. Тогда первый разрез сделаем через две вершины квадрата — получаем два треугольника, затем каждым разрезом через вершину и сторону увеличиваем количество треугольников на 1 пока не получим n. В таком случае r= n-1 . Исключение: если n=1, то r=1.

Ссылка на Ideone

http://ideone.com/X0D8jF