e-olymp 2670.Координаты соседей

Задача

Для клетки с координатами $\left(x, y\right)$ в таблице размером $M\times N$ выведите координаты ее соседей. Соседними называются клетки, имеющие общую сторону.

Входные данные

Даны натуральные числа $M, N, x, y \left(1 \leqslant x \leqslant M \leqslant 109, 1 \leqslant y \leqslant N \leqslant 109\right).$

Выходные данные

В выходной файл выведите пары координат соседей этой клетки в произвольном порядке.

Тесты

Входные данные Выходные данные
3 3
2 2
1 2
2 1
2 3
3 2
23 23
21 13
20 13
22 13
21 12
21 14
11 8
10 5
9 5
11 5
10 4
10 6

Код решения

Решение

Для решения этой задачи стоит просмотреть все варианты координат соседних точек. То есть, нужно прибавить единицу к абсциссам и ординатам заданной точки. Но стоит учесть, что таблица у нас ограничена: $1 \leqslant x \leqslant M, 1 \leqslant y \leqslant N$

Ссылки

Ссылка на E-olymp
Ссылка на решение

e-olymp 72. Дорога домой

Задача

Бедный Иа

Бедный Иа

Возвращаясь домой, после захватывающей игры в гостях у Винни Пуха, ослик Иа решил немного прогуляться. Поскольку во время прогулки он все время думал о своем приближавшемся дне рождения, то не заметил, как заблудился. Известно, что ослик во время прогулки всегда передвигается по определенному алгоритму: в начале прогулки он всегда начинает движение на северо-восток, делает при этом один шаг (перемещаясь при этом в точку [latex]\left \langle 1,1 \right \rangle[/latex]), потом меняет направление и двигается на юго-восток, далее на юго-запад, на северо-запад и так далее. При каждом изменении направления ослик всегда делает на [latex]n[/latex] шагов больше, чем было сделано до изменения направления.

Когда ослик все же решил возвратится домой, то обнаружил, что зашел глубоко в лес. Надвигалась ночь и Иа захотел поскорее попасть домой. Помогите узнать, удастся ли сегодня ослику попасть домой до заката солнца, если известно, что солнце зайдет через [latex]t[/latex] часов, а скорость передвижения ослика [latex]v[/latex] шагов в час (длина шага у ослика постоянна). Известно, что движение ослик начинал из точки с координатами [latex]\left \langle 0,0 \right \rangle[/latex], а его дом расположен в точке [latex]\left \langle x_{h},y_{h} \right \rangle[/latex], и направление движения он менял [latex]k[/latex] раз.

Входные данные

В первой строке задано четыре целых числа [latex]n[/latex], [latex]k[/latex], [latex]t[/latex], [latex]v[/latex] [latex](0\leq n,k,t,v\leq 100)[/latex] . Во второй строке размещено два целых числа [latex]x_{h}[/latex], [latex]y_{h}[/latex] – координаты домика ослика [latex](-10^5\leq x_{h}, y_{h}\leq 10^5)[/latex] .

Выходные данные

Вывести Good night Ia, если ослик успеет дойти домой до заката солнца или Poor Ia в противоположном случае.

Тесты

Входные данные
Выходные данные
[latex]1[/latex] [latex]5[/latex] [latex]3[/latex] [latex]2[/latex]

 

[latex]5[/latex] [latex]7[/latex]
Good night Ia
[latex]5[/latex] [latex]2[/latex] [latex]3[/latex] [latex]9[/latex]

 

[latex]15[/latex] [latex]15[/latex]
Good night Ia
[latex]4[/latex] [latex]4[/latex] [latex]3[/latex] [latex]20[/latex]

 

[latex]105[/latex] [latex]-105[/latex]
Poor Ia
[latex]3[/latex] [latex]4[/latex] [latex]2[/latex] [latex]3[/latex]

 

[latex]40[/latex] [latex]-20[/latex]
Good night Ia
[latex]1[/latex] [latex]3[/latex] [latex]7[/latex] [latex]2[/latex]

 

[latex]-24[/latex] [latex]0[/latex]
Poor Ia
[latex]1[/latex] [latex]3[/latex] [latex]7[/latex] [latex]2[/latex]

 

[latex]-23[/latex] [latex]0[/latex]
Good night Ia

Первый вариант кода программы

Второй вариант кода программы

Решение задачи

Вариант 1

Разделим решение задачи на две части: поиск местоположения Иа после прогулки и расчет пути домой.
Имеем следующую формулу вычисления вектора нахождения Иа после прогулки:
[latex]\sum\limits_{i=0}^k f(i, n)[/latex], где [latex]n[/latex] — изменение количества шагов Иа в каждой итерации, [latex]k[/latex] — cколько раз он менял движение, и функции:

[latex]f(x,y) = \begin{cases} \left \langle1 + xy, 1 + xy\right \rangle & \textit{if } x\vdots 4 = 0 \\\\ \left \langle1 + xy, (-1) \cdot (1 + xy)\right \rangle & \textit{if } x\vdots 4 = 1 \\\\ \left \langle(-1) \cdot (1 + xy), (-1) \cdot (1 + xy)\right \rangle & \textit{if } x\vdots 4 = 2 \\\\ \left \langle(-1) \cdot (1 + xy), 1 + xy\right \rangle & \textit{if } x\vdots 4 = 3 \end{cases}[/latex]

То есть, результат функции [latex]f(x,y)[/latex] это вектор, на который передвинулся Иа в итерации номер [latex]x[/latex] с изменением шага [latex]y[/latex], а результат [latex]\sum\limits_{i=0}^k f(i, n)[/latex] — это вектор [latex]\left \langle a,b \right \rangle[/latex] местоположения Иа в конце прогулки. Теперь нужно посчитать расстояние между местоположением Иа и его домом. Считаем из вектора [latex]\left \langle a,b \right \rangle[/latex] и вектора [latex]\left \langle x_{h},y_{h} \right \rangle[/latex]:

$$\sqrt{(x_{h} — a)^2 + (y_{h} — b)^2}$$

И считаем максимальное расстояние, которое может пройти Иа до заката солнца. Тут нужно учесть то, что скорость в условии измеряется в шагах в час, а шаг это расстояние между [latex]\left \langle 0,0 \right \rangle[/latex] и [latex]\left \langle 1,1 \right \rangle[/latex], то есть — [latex]\sqrt{2}[/latex].

$$ \sqrt{2} tv$$

Итого, выводим Good night Ia, если [latex]2t^2v^2 \geq (x_{h} — a)^2 + (y_{h} — b)^2[/latex] и Poor Ia в противном случае.

Вариант 2

Если рассмотреть каждое направление спирали, как элемент арифметической прогрессии, то можно следующим образом получить алгоритм решения данной задачи с вычислительной сложностью [latex]O(1)[/latex]. Используем сумму арифметической прогрессии $S = \displaystyle\frac{a_1 + a_m}{2}$, где $a_m = 1+(m-1)d$

Для направления на северо-восток:
$$a_1 = 1, d = 4n \Rightarrow S_{1}=\frac{1 + 1 +4n(m_1-1)}{2}\Rightarrow S_{1} = m_1(1+2n(m_1-1)),$$
где $m_1 = \displaystyle\frac{k+1}{4} + 1,$ если$ (k+1)\vdots 4 >=1$ иначе, $m_1=\displaystyle\frac{k+1}{4}$

Для направления на юго-восток:
$$a_2 = 1+n, d = 4n \Rightarrow S_{2} = m_2(1+n+2n(m_2-1)),$$
где $m_2 = \displaystyle\frac{k+1}{4} + 1,$ если$ (k+1)\vdots 4 >=2$ иначе, $m_2=\displaystyle\frac{k+1}{4}$

Для направления на юго-запад:
$$a_3 = 1+2n, d = 4n \Rightarrow S_{3} = m_3(1+2n+2n(m_3-1)),$$
где $m_3 = \displaystyle\frac{k+1}{4} + 1,$ если$ (k+1)\vdots 4 >=3$ иначе, $m_3=\displaystyle\frac{k+1}{4}$

Для направления на северо-запад:
$$a_4 = 1+3n, d = 4n \Rightarrow S_{4} = m_4(1+3n+2n(m_4-1)),$$
где $m_4 = \displaystyle\frac{k+1}{4} + 1,$ если$ (k+1)\vdots 4 >=4$ иначе, $m_4=\displaystyle\frac{k+1}{4}$

Тогда, для вычисления координат [latex]\left \langle x,y \right \rangle[/latex] воспользуемся следующей формулами:
$$x = S_{1} + S_{2} — S_{3} — S_{4}$$
$$y = S_{1} — S_{2} — S_{3} + S_{4}$$
Последующие вычисления эквивалентны первому варианту решения.

Ссылки

Условие задачи на e-olymp
Код решения первого варианта на ideone.com
Код решения второго варианта на ideone.com

e-olymp 74. Паук и муха — 2

Задача

В пустой прямоугольной комнате длины [latex]А[/latex], ширины [latex]В[/latex] и высоты [latex]С[/latex] муха упала на пол и уснула. Паук, находящийся на одной из стен, или на полу, или на потолке, начал двигаться к ней по кратчайшему пути.

spayder-and-fly-2-task

На какое расстояние он при этом переместится? Известно, что паук может передвигаться только по поверхности комнаты или же спускаться на паутине с потолка на пол, но только под прямым углом.

Входные данные

В первой строке заданы размеры комнаты [latex]A[/latex], [latex]B[/latex], [latex]C[/latex]. Во второй строке – координаты мухи на полу [latex]X1[/latex], [latex]Y1[/latex], [latex](0 ≤ X1 ≤ A[/latex], [latex]0 ≤ Y1 ≤ B)[/latex]. В третьей строке – координаты паука [latex]X2[/latex], [latex]Y2[/latex], [latex]Z2[/latex], [latex](0 ≤ X2 ≤ A[/latex], [latex]0 ≤ Y2 ≤ B[/latex], [latex]0 ≤ Z2 ≤ C)[/latex]. Все входные данные – целые не отрицательные числа, не превосходящие [latex]500[/latex].

Выходные данные

Одно число – расстояние, на которое переместится паук, посчитанное с точностью до 2-х знаков после запятой.

Тесты

Входные данные Выходные данные
[latex]A[/latex] [latex]B[/latex] [latex]C[/latex] [latex]X1[/latex] [latex]Y1[/latex] [latex]X2[/latex] [latex]Y2[/latex] [latex]Z2[/latex] [latex]S[/latex]
[latex]4[/latex] [latex]7[/latex] [latex]3[/latex] [latex]2[/latex] [latex]1[/latex] [latex]3[/latex] [latex]7[/latex] [latex]2[/latex] [latex]8.06[/latex]
[latex]145[/latex] [latex]26[/latex] [latex]306[/latex] [latex]12[/latex] [latex]24[/latex] [latex]0[/latex] [latex]0[/latex] [latex]305[/latex] [latex]309.34[/latex]
[latex]26[/latex] [latex]18[/latex] [latex]53[/latex] [latex]24[/latex] [latex]15[/latex] [latex]24[/latex] [latex]1[/latex] [latex]53[/latex] [latex]58.52[/latex]
[latex]89[/latex] [latex]89[/latex] [latex]189[/latex] [latex]12[/latex] [latex]24[/latex] [latex]0[/latex] [latex]89[/latex] [latex]16[/latex] [latex]70.77[/latex]
[latex]18[/latex] [latex]26[/latex] [latex]145[/latex] [latex]14[/latex] [latex]2[/latex] [latex]17[/latex] [latex]26[/latex] [latex]141[/latex] [latex]147.14[/latex]

Код программы

Решение задачи

Данная задача решается с помощью «разверток» комнаты: переход от трёхмерного пространства к двумерному.
Вид комнаты:
room_3d
Рассмотрим такие случаи:

  1. Паук находится на полу ([latex]Z_2 = 0[/latex]);
  2. Паук находится на одной из стенок ([latex]X_2 = 0[/latex], или [latex]X_2 = A[/latex], или [latex]Y_2 = 0[/latex], или [latex]Y_2 = B[/latex] и [latex]Z_2 \neq 0[/latex]) либо на потолке ([latex]X_2 \neq 0[/latex], и [latex]X_2 \neq A[/latex], и [latex]Y_2 \neq 0[/latex], и [latex]Y_2 \neq B[/latex], и [latex]Z_2 = C[/latex]).

Первый случай тривиален и вычисляется по формуле [latex]\sqrt{(X_1 — X_2)^2 + (Y_1 — Y_2)^2}[/latex].
В случае, когда паук сидит на стенке, мы можем построить 3 развертки:
Допустим, паук находится на левой боковой стенке ([latex]X_2 = 0[/latex]). Остальные случаи аналогичны этому.

  • Паук ползет по этой стенке, затем по полу. Тогда развертка будет такой:
    deploy1
  • Паук ползет через ближнюю к нам стенку и по полу. Тогда развертка следующая:
    deploy2
  • Аналогичен предыдущему случаю, только через дальнюю от нас стенку.

По этим разверткам мы можем вычислить координаты паука и кратчайшее расстояние от него до мухи. Если же паук находится в одном из углов комнаты, то мы находим наименьшее расстояние из двух вариантов развертки.
Когда же паук сидит на потолке, не соприкасаясь ни с одной из стенок, у него есть 13 вариантов:

  • Паук спускается с потолка на паутине, затем ползет точно так же, как и в самом первом случае.
  • Паук ползет по потолку, по одной из стенок и по полу. Тогда развертка будет выглядеть следующим образом (потолок можно развернуть в 4 стороны — отсюда 4 случая):
    deploy3
  • Паук ползет по потолку, а затем по двум соседним стенкам и по полу. Таких случаев 8, поскольку порядок следования стенок, по которым тот ползет, также важен. Развертка одного из них:
    deploy4

По этим разверткам мы также можем вычислить координаты паука и кратчайшее расстояние от него до мухи.

Ссылки

Условие задачи на e-olymp
Задача Дьюдени о пауке и мухе
Код решения

e-olymp 130. Прямоугольник

Задача

Заданы координаты трёх вершин прямоугольника. Найдите координаты четвертой вершины.

Входные данные

В единственной строке записано шесть чисел — координаты трёх точек.

Выходные данные

Два числа, координаты искомой вершины прямоугольника. Все входные и выходные данные — целые числа, не превышающие по модулю [latex]100[/latex].

Тесты

Входные данные Выходные данные
[latex]0[/latex] [latex]0[/latex] [latex]0[/latex] [latex]1[/latex] [latex]2[/latex] [latex]1[/latex] [latex]2[/latex] [latex]0[/latex]
[latex]1\, 4\, 4\, 0\, 0\, 2[/latex] [latex]5\, 2[/latex]
[latex]-100[/latex] [latex]-100[/latex] [latex]100[/latex] [latex]100[/latex] [latex]100[/latex] [latex]-100[/latex] [latex]-100[/latex] [latex]100[/latex]
[latex]2[/latex] [latex]-1[/latex] [latex]3[/latex] [latex]1[/latex] [latex]-2[/latex] [latex]1[/latex] [latex]-1[/latex] [latex]3[/latex]
[latex]8\, 0\, 1\, 6\, 0\, 4[/latex] [latex]9\, 2[/latex]

Код программы

Решение задачи

Прямоугольник

Прямоугольник

Координаты четвертой вершины будут равны сумме координат прилежащих вершин минус координаты противоположной вершины, т. е: [latex]x_4=x_1+x_3-x_2[/latex] и [latex]y_4=y_1+y_3-y_2[/latex]. Но мы не знаем какая из входных вершин противоположна четвертой, а какие — прилежащие. Так как наша фигура это прямоугольник, то противоположная вершина будет при угле [latex]90^{\circ}[/latex]. Произведение перпендикулярных векторов дает [latex]0[/latex]. Перебрав три варианта произведения векторов, заданных входными вершинами, находим вершину при угле [latex]90^{\circ}[/latex]. Остальные две, соответственно, будут прилежащими. Находим координаты четвертой вершины по формуле, заданной выше.

Ссылки

Условие задачи на e-olymp
Код решения