e-olymp 2. Цифры

Задача

Вычислить количество цифр целого неотрицательного числа $latex n$.

Входные данные

Неотрицательное целое число [latex]n[/latex] [latex](0<=n<=2*10^9)[/latex].

Выходные данные

Количество цифр в числе $latex n$.

Тесты

n Количество цифр
3 1
327 3
1024 4

Решение

Объявляем переменную x для подсчета цифр в числе и присваиваем ей значение 1, вводим n . Далее используем цикл while , проверяя деление числа n на 10 (так как тип числа int ). Это «отбрасывает» последнюю цифру в числе. Пока результат проверки истинный, инкриментируем x на 1.

Пример работы программы можно увидеть на ideone.

Ввод данных — Scanner

Разберемся с одним из подходов к вводу данных из стандартного потока через класс java.util.Scanner. Сделаем это на примере простой задачи с очень полезного сайта e-olimp.com

Задача

Введите из стандартного потока одно число. В предположении, что это положительное двузначное целое число выведите в стандартный поток вывода каждую его цифру отдельно (через пробел). Порядок цифр менять не следует.

Тесты

Никаких специфических случаев в алгоритме не предполагается. Делаем три теста — самое маленькое число допустимого диапазона, самое большое и какое-нибудь значение из середины диапазона.

Вход Выход
10 1 0
99 9 9
54 5 4

Решение

Воспользуемся классом java.util.Scanner, чтобы ввести данные в формате целого числа. И вычислим обе его цифры.

Пояснения

  1. Описываем переменную i типа java.util.Scanner и тут же присваиваем ей значение нового объекта этого класса. Конструктор изготавливает объект Scanner‘а из стандартного потока ввода. Т.е. i становится надстройкой над стандартным потоком ввода. Это позволяет нам прочесть целое число, а не просто читать методом read() по одному байту.
  2. С помощью метода nextInt() читаем последовательность цифр и преобразуем её в целое число. Число запоминаем в переменной n.
  3. n / 10 — число десятков в числе. Десятков будет в десять раз меньше чем само число. Выполняется целочисленное деление — деление нацело.
  4. n % 10 — вычисляем остаток от деления на десять — число единиц — самая правая цифра числа.
  5. n / 10 + » » + n % 10 — вставляем между двумя целыми строку из одного пробела. В этом случае числа также преобразуются в строковое представление и все три строки сливаются — называется конкатенация строк. Так работает со строковыми данными операция «+».

Далее

Попробуйте найти все цифры трёхзначного числа.

Если удалось справиться с трёхзначным числом, решаем задачи из категории Линейные алгоритмы. Как можно больше. Даже если все кажется понятным. Тем более если все кажется понятным. Нам ведь нужно уметь писать программы, а не понимать как это делается. Тем более, что в каждой задаче вероятно придется выяснить что-то новенькое для себя.