e-olymp 365. Рамка

Задача

Василий и Петр игрались на уроке. На прямоугольном листке бумаги в клеточку Василий по линях сетки рисует отрезок, параллельный одной из сторон листка, и рамку прямоугольной формы. Он шепчет на ухо Петру координаты концов отрезка и координаты двух противоположных углов рамки, а Петр старается быстро определить длину части отрезка, оказавшуюся внутри рамки. У него это плохо получалось, и он написал программу, которая это делала всегда правильно. Напишите её и вы.

Входные данные

Заданы через пробел $8$ чисел — координаты начала и конца отрезка и координаты противоположных углов рамки. Координаты — целые числа, не превышающие по модулю $35000$.

Выходные данные

Вывести одно число — длину части отрезка, которая оказалась внутри рамки.

Тесты

Входные данные

Выходные данные

1 4 1 9 1 2 3 5 -2 1
2 2 2 6 2 4 4 7 1 2
3 3 2 3 5 4 3 6 2 0
4 1 2 5 2 2 5 4 1 2

Код программы

 

Решение

Так как отрезок параллелен одной из сторон листка, то абсциссы (или ординаты) концов отрезка должны совпадать. Будем рассматривать случай когда они находятся между абсциссами (или ординатами соответственно) соответствующих вершин прямоугольника (в противном случае отрезок не проходит через рамку и ответ $0$).Отрезок не проходит через рамку

Если абсцисса левого или правого конца отрезка будет находиться, соответственно, правее крайней справа или левее крайней слева абсциссы вершины прямоугольника, то отрезок не проходит через рамку (для ординат аналогично).

В противном случае, отрезок проходит через рамку и мы можем подсчитать какая его часть находится внутри рамки. Для этого необходимо найти разность между абсциссами (ординатами) концов части отрезка находящийся внутри прямоугольника.  Абсциссой левого конца такого отрезка будет максимальная из абсцисс левого конца изначального отрезка и крайней слева абсциссы прямоугольника, абсциссой правого конца такого отрезка будет минимальная из абсцисс правого конца изначального отрезка и крайней справа абсциссы прямоугольника (для ординат аналогично).

Обозначим  искомую длину как $ans$, тогда $ans = min(x_{2}, x_{4})-max(x_{1}, x_{3})$.

Для ординат  $ans = min(y_{2}, y_{4})-max(y_{1}, y_{3})$.

Отрезок проходит через рамку

Ссылки

Условие задачи на e-olymp

Код программы на ideone

e-olymp 124. Квадрат

Условие задачи

Найдите периметр и площадь квадрата.

Входные данные:
Каждая строка является отдельным тестом и содержит одно целое число — длину стороны квадрата $n$ (1 $\leqslant$ $n$ $\leqslant$ 1000).

Выходные данные:
Для каждого теста выведите в одной строке периметр и площадь квадрата.

Тесты

Входные данные Выходные данные
1 3
5
10
12 9
20 25
40 100
2 3
3
3
12 9
12 9
12 9
3 1000
1
500
4000 1000000
4 1
2000 250000

Код

Решение

У нас дана сторона квадрата $n$.

  • Находим периметр квадрата, используя формулу $P = 4n$.
  • Находим площадь квадрата, используя формулу $S = n^{2}$.
  • Так как каждая новая строка — новое значение для стороны квадрата и таких строк неизвестное количество то используем myObj.hasNext() для потоковой обработки данных.

Ссылки

  • Задача на сайте e-olymp
  • код решения Ideone

e-olymp 143. Точка и треугольник

Точка и треугольник

Принадлежит ли точка [latex]O[/latex] треугольнику [latex]ABC[/latex]?

Входные данные

Содержит координаты точек [latex]O, A, B, C[/latex]. Числовые значения не превышают по модулю 100.

Выходные данные

Вывести 1, если точка [latex]O[/latex] принадлежит треугольнику [latex]ABC[/latex] и 0 в противоположном случае.

Входные данные Выходные данные
1 2 6 -9 3 8 1 5 11 1
2 -13 10 -12 5 99 80 17 13 0
3 98 -50 -87 7 5 3 23 17 0
4 5 15 7 12 5 3 2 54 1
5 2 2 3 1 1 3 9 11 1

Код программы

Решение

Для того, чтобы точка [latex]M[/latex] принадлежала треугольнику, заданному точками [latex]D([/latex]$x_{1}$,$y_{1}$[latex]), [/latex] [latex]E([/latex]$x_{2}$,$y_{2}$[latex]), [/latex][latex]F([/latex]$x_{3}$,$y_{3}$[latex]), [/latex] необходимо, чтобы псевдоскалярное (косое) произведение соответствующих векторов было больше либо равно нулю или же меньше либо равно нуля. Пользуясь формулой для косого произведения, запишем произведения векторов.
[$\overline{DE}$,$\overline{MD}$]=($x_{1}$-$x_{0}$) $\cdot$ ($y_{2}$-$y_{1}$)-($x_{2}$-$x_{1}$) $\cdot$ ($y_{1}$-$y_{0}$)
[$\overline{EF}$,$\overline{ME}$]=($x_{2}$-$x_{0}$) $\cdot$ ($y_{3}$-$y_{2}$)-($x_{3}$-$x_{2}$) $\cdot$ ($y_{2}$-$y_{0}$)
[$\overline{FD}$,$\overline{MF}$]=($x_{3}$-$x_{0}$) $\cdot$ ($y_{1}$-$y_{3}$)-($x_{1}$-$x_{3}$) $\cdot$ ($y_{3}$-$y_{0}$)
Если [$\overline{DE}$,$\overline{MD}$], [$\overline{EF}$,$\overline{ME}$] и [$\overline{FD}$,$\overline{MF}$] больше либо равно нулю или же меньше либо равно нуля, то точка принадлежит треугольнику.

 

Ссылки

Ссылка на Ideone
Ссылка на e-olymp

e-olymp 924. Кольцо


Заданы площадь кольца и радиус внешней окружности. Определить радиус внутренней окружности.

Входные данные

В одной строке заданы два вещественных числа: площадь кольца и радиус внешней окружности, величина которой не превышает $100$.

Выходные данные

Вывести радиус внутренней окружности с 2 десятичными знаками.

Тесты

S $R$ $r$
50.2655 5 3.00
45 8 7.05
73.07 7.7 6.00
83.5 34 33.61

Решение

Для начала стоит напомнить, что площадь круга вычисляется по формуле $S=\pi R^2$.
С клавиатуры вводится площадь кольца $S$ и радиус большей окружности $R$
Зная значение радиуса большей окружности, можно найти площадь большего круга $S_R = \pi R^2$
Зная, что площадь малого круга и площадь кольца образуют площадь большого круга, найдём площадь малого круга $S_r = S_R — S$
Далее находим радиус малой окружности $r$ по формуле $r=\sqrt\frac{S_r}{\pi}$

Ссылки

Ссылка на E-olymp
Ссылка на решение

e-olymp 76. Новый шкаф

Задача

New CaseЗаданы размеры прямоугольной двери $a$, $b$ и размеры шкафа, который имеет форму прямоугольного параллелепипеда $x$, $y$, $z$. Можно ли пронести шкаф сквозь дверь, если проносить его разрешается так, чтобы каждое ребро шкафа было параллельно или перпендикулярно стороне двери.

Входные данные

Пять действительных чисел $a$, $b$, $x$, $y$, $z$ ( $0\;\lt\;a,\;b,\;x,\;y,\;z\;\lt\;10$ ).

Выходные данные

Вывести $1$, если шкаф можно свободно пронести сквозь дверь и $0$ в противоположном случае.

Тесты

Входные данные Выходные данные
$5\;7\;4\;6\;8$ $1$
$1\;4\;2\;3\;6$ $0$
$2.9\;6.7\;5.1\;3.7\;1.0$ $1$
$4\;6\;6\;4\;3$ $1$
$1.5\;8\;9.9\;2\;7.5$ $0$
$2\;2\;2\;2\;2$ $0$
$2\;3\;7\;8\;8$ $0$
$5\;6\;2\;4\;3.5$ $1$

Код программы

Решение

Шкаф можно пронести через дверь тогда и только тогда, когда ширина и высота его грани, параллельной дверному проему, меньше ширины и высоты двери.

Имеем шесть возможных вариантов ширины и высоты грани шкафа — $(x,y)$, $(y,x)$, $(y,z)$, $(z,y)$, $(x,z)$, $(z,x)$

Сравнивая их с размерами двери определяем, можно ли пронести шкаф сквозь дверь.

Ссылки

Условие задачи на e-olymp
Решение на ideone
Решение на e-olymp

e-olymp 52. Сыр для Анфисы

Сыр для Анфисы

Готовя обед для Анфисы — символа 2008 года, хозяин использовал для разрезания сыра специальный нож, который разрезал сыр на одинаковые прямоугольные паралелепипеды с основанием в виде квадрата со стороной [latex]a[/latex] и высотой [latex]b[/latex].
Но Анфиса, как и подобает даме года, любила употреблять сыр несколько меньших размеров, для чего она всегда разрезала предложенный кусочек деликатеса на две части, предварительно установив его строго вертикально квадратом к столу. При разрезании нож всегда размещался по диагонали квадрата, но Анфисе не всегда удавалось разрезать кусочек пополам, так как плоскость лезвия ножа образовывала двугранный угол [latex]z^o[/latex] с плоскостью основания.
Найти площадь [latex]s[/latex] созданного Анфисой сечения.

Входные данные

Целые числа [latex]a[/latex], [latex]b[/latex], [latex]z[/latex], не превышающие [latex]90^o[/latex].

Выходные данные

Площадь [latex]s[/latex] образованного сечения с точностью до трех десятичных знаков.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 [latex]2[/latex] [latex]3[/latex] [latex]90[/latex] [latex]8.485[/latex]
2 [latex]2[/latex] [latex]4[/latex] [latex]0[/latex] [latex]0.000[/latex]
3 [latex]1[/latex] [latex]2[/latex] [latex]3[/latex] [latex]0.501[/latex]
4 [latex]1[/latex] [latex]1[/latex] [latex]100[/latex] [latex]1.615[/latex]
5 [latex]3[/latex] [latex]10[/latex] [latex]48[/latex] [latex]6.725[/latex]

 

Код программы

Решение задачи

Для решения данной задачи нам нужно рассмотреть 4 случая:
1) Если [latex]\cot[/latex] заданного угла не будет превышать [latex]\frac{a} {\sqrt{2} \cdot b}[/latex] и также не будет равен [latex]0^o[/latex] и [latex]90^o[/latex], то фигурой сечения получится треугольник. Его площадь мы сможем найти по формуле [latex]s = \frac {a^{2}} {2 \cos (z \cdot \frac {\pi} {180})}[/latex].
2) Заданный угол = [latex]0^o[/latex], следовательно площадь сечения также будет = 0, так как сыр нормально и не порежут.
3) Заданный угол = [latex]90^o[/latex], фигурой сечения будет прямоугольник, площадь которого мы сможем найти по формуле [latex]s = a \cdot b \cdot \sqrt{2}[/latex].
4) В любом другом случае, получится трапеция, площадь которой мы найдем по формуле [latex]s = \frac {a \cdot \sqrt{2} — b \cdot 1} {tan(z \cdot \frac{\pi}{180})} \cdot \frac {b} {sin (z \cdot \frac {\pi}{180})}[/latex].

Ссылки

• Задача на e-olymp.

• Решение на сайте ideone.

e-olymp 49. Кот учёный

Задача

Уезжая из дома, поэт оставлял коту, прикованному к дубу цепью длиной $l$, $n$ рыбин. Зная координаты головы и хвоста каждой из них, подсчитайте, на какие сутки у кота визникнет чувство голода, если оно возникает тогда, когда за сутки он съест меньше, чем $k$ рыбин. Рыбину он может съесть, если сможет дотянуться хотя бы к одной её точке. Координаты дуба $(0, 0)$.

Входные данные

В первой строке находятся числа $l$, $n$, $k$. Далее идет $n$ строк: координаты головы $(x_{1i}, y_{1i})$ и хвоста $(x_{2i}, y_{2i})$ каждой рыбины. Все входные данные — целые числа, не превышающие по модулю $100$.

Выходные данные

Вывести день, на который у кота появится чувство голода.

Тесты

Входные данные Выходные данные
[latex]4\, 4\, 2[/latex] [latex]2[/latex]
[latex]1\, 1\, -1\, 3[/latex]
[latex]2\, 2\, 4\, 2[/latex]
[latex]-3\, -4\, -3\, 4[/latex]
[latex]1\, -5\, 4\, -4[/latex]
[latex]3\, 2\, 1[/latex] [latex]3[/latex]
[latex]1\, 2\, 3\, 4[/latex]
[latex]1\, -1\, -1\, 1[/latex]
[latex]3\, 5\, 4[/latex] [latex]1[/latex]
[latex]2\, 4\, 5\, 7[/latex]
[latex]1\, -1\, -1\, 1[/latex]
[latex]8\, 10\, 2\, 7[/latex]
[latex]12\, 3\, 4\, 2[/latex]
[latex]100\, 100\, -100\, -100[/latex]

Код программы

Решение задачи

Для каждой рыбы мы будем делать такой процесс.
Для начала проверим расстояния от начала координат до каждого из концов рыбы. Если хотя бы одно из них меньше либо равно длине цепи, то кот сможет съесть эту рыбу и ничего больше проверять не надо. Если же эти расстояния больше длины цепи поступим так. Найдем уравнение прямой проходящей через две точки (координаты начала и конца рыбы). Оно имеет вид: $$\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}$$ Приведем его к виду $ax+by+c=0$. Получим, что $a=y_2-y_1$, $b=-(x_2-x_1)$, $c=y_1(x_2-x_1)-x_1(y_2-y_1)$. Теперь проверим длину перпендикуляра к этой прямой от начала координат (т. к. если длина перпендикуляра больше длины цепи, кот точно не дотянется до рыбы). Расстояние $d$ от точки $(0,0)$ до прямой $ax+by+c=0$ посчитаем по формуле: $$d=\frac{a\cdot 0+b\cdot 0+c}{\sqrt{a^2+b^2}}$$ Избавляясь от корня и деления, получим условие: $$c^2\leq l^2(a^2+b^2)$$ (где $l$ — длина цепи). Если это условие выполняется, остается проверить, что точка пересечения перпендикуляра и прямой лежит между началом и концом рыбы (нам достаточно проверить по одной из координат, например по второй). Прямая, перпендикулярная исходной и проходящая через точку $(0,0)$, будет иметь вид: $$\frac{x}{a}=\frac{y}{b}$$ (т. к. $(a,b)$ — нормальный вектор к прямой, проходящей через начало и конец рыбы). Получаем систему из двух уравнений и двух неизвестных. Решая эту систему, получаем, что вторая координата точки пересечения равна: $$y=\frac{-cb}{a^2+b^2}$$ Теперь проверяем, лежит ли эта координата, между вторыми координатами начала и конца рыбы. Если да, то кот сможет съесть эту рыбу, иначе — нет.
Ответом на задачу будет $\left \lfloor\frac{count}{k}\right \rfloor+1$, где $count$ — количество рыб, до которых смог дотянуться кот, $k$ — минимальное количество рыб, которое кот должен съесть в сутки.

Ссылки

Условие задачи на e-olymp
Код решения

e-olymp 2501. Круговая диаграмма

Задача


Для графического изображения соотношения между различного рода величинами во многих областях человеческой деятельности используются различные графики и диаграммы. Одним из типов диаграмм является так называемая круговая диаграмма.

Исходными данными для этой диаграммы является набор чисел $a_1,\ldots, a_n, а$ диаграмма представляет собой круг радиуса $r$, разделенный на секторы. При этом каждому из чисел соответствует ровно один сектор, площадь которого пропорциональна этому числу. Общая площадь секторов равна площади круга.

Ваша задача состоит в том, чтобы по набору чисел и по радиусу круга определить площадь каждого из секторов круговой диаграммы.

Входные данные

Первая строка содержит два целых числа $n$ и $r \space (1 \leq n, r \leq 100)$. Вторая строка содержит $n$ целых чисел $a_1,\ldots, a_n \space (1 \leq a_i \leq 100 \space \forall \space i = \overline{1, n})$.

Выходные данные

Выведите $n$ вещественных чисел — площади секторов, соответствующих числам $a_1,\ldots, a_n$. Выводите каждое из чисел в отдельной строке.

Все эти числа должны быть выведены с точностью не хуже $10^{-6}$.

Тесты

Входные данные Выходные данные
3 2
1 4 3
1.570796327
6.283185307
4.712388980
2 3
3 8
7.711181968
20.563151914
4 5
2 5 9 1
9.239978393
23.099945982
41.579902768
4.619989196
5 9
4 16 8 20 11
17.252135928
69.008543713
34.504271856
86.260679641
47.443373803

Код программы

Решение

Найдем сперва сумму всех чисел $a_i$ и площадь диаграммы (по известной формуле площади круга). Теперь можем легко посчитать площади каждого из секторов нашей диаграммы, разделив площадь последней на ранее найденную сумму и умножив их частное на соответствующее число $a_i$.

Ссылки

Условие задачи на e-olymp
Код решения на Ideone
Решение этой же задачи на C++

e-olymp 130. Прямоугольник

Задача

Заданы координаты трёх вершин прямоугольника. Найдите координаты четвертой вершины.

Входные данные

В единственной строке записано шесть чисел — координаты трёх точек.

Выходные данные

Два числа, координаты искомой вершины прямоугольника. Все входные и выходные данные — целые числа, не превышающие по модулю [latex]100[/latex].

Тесты

Входные данные Выходные данные
[latex]0[/latex] [latex]0[/latex] [latex]0[/latex] [latex]1[/latex] [latex]2[/latex] [latex]1[/latex] [latex]2[/latex] [latex]0[/latex]
[latex]1\, 4\, 4\, 0\, 0\, 2[/latex] [latex]5\, 2[/latex]
[latex]-100[/latex] [latex]-100[/latex] [latex]100[/latex] [latex]100[/latex] [latex]100[/latex] [latex]-100[/latex] [latex]-100[/latex] [latex]100[/latex]
[latex]2[/latex] [latex]-1[/latex] [latex]3[/latex] [latex]1[/latex] [latex]-2[/latex] [latex]1[/latex] [latex]-1[/latex] [latex]3[/latex]
[latex]8\, 0\, 1\, 6\, 0\, 4[/latex] [latex]9\, 2[/latex]

Код программы

Решение задачи

Прямоугольник

Прямоугольник

Координаты четвертой вершины будут равны сумме координат прилежащих вершин минус координаты противоположной вершины, т. е: [latex]x_4=x_1+x_3-x_2[/latex] и [latex]y_4=y_1+y_3-y_2[/latex]. Но мы не знаем какая из входных вершин противоположна четвертой, а какие — прилежащие. Так как наша фигура это прямоугольник, то противоположная вершина будет при угле [latex]90^{\circ}[/latex]. Произведение перпендикулярных векторов дает [latex]0[/latex]. Перебрав три варианта произведения векторов, заданных входными вершинами, находим вершину при угле [latex]90^{\circ}[/latex]. Остальные две, соответственно, будут прилежащими. Находим координаты четвертой вершины по формуле, заданной выше.

Ссылки

Условие задачи на e-olymp
Код решения

e-olymp 1507. История Лаурела-Харди

Задача

Лаурел и Харди — два известных киногероя $50$-ых. Они известны своей разницей в весе, как можно увидеть на картинке. Если Вы еще не разобрались, кто из них кто, то я добавлю, что Лаурел легче. В свои юношеские годы Лаурел и Харди любили играть со странными качелями, и когда качели находились в равновесии, то Харди всегда был у земли. Мы рассмотрим двумерную версию качель.

Качели, которыми пользовались Лаурел и Харди, представляют собой часть окружности радиуса $r$, как показано на картинке (они закрашены серым и имеют вид буквы $D$). Харди сел на точку $B$ (самая правая точка качель), а Лаурел сел на точку $A$ (самая левая точка отрезка $AB$). $d = EF$ — расстояние между центром отрезка $AB$ и дуги $AFB$. То есть $E$ — середина отрезка $AB$, а $F$ — середина дуги $AFB$. $MN$ — основа качель, является горизонтальной прямой. $BD = h_1$ — расстояние от Харди до земли. Вам необходимо найти расстояние от Лаурела до земли (обозначаемое $h_2 = AC$).

Входные данные

Первая строка содержит количество тестов $N \space (0 < N ≤ 1000)$. Каждая из следующих $N$ строк представляет собой отдельный тест, который имеет следующий формат:

Каждая строка содержит три целых числа $r \space (10 ≤ r ≤ 100), \space$ $d \space (5 ≤ d ≤ r), \space$ $h_1 \space (5 ≤ h_1 ≤ d)$. Значение этих чисел приведено выше.

Выходные данные

Для каждого теста в отдельной строке вывести его номер и действительной число — значение $h_2$. Это число должно содержать четыре десятичных знака. Формат вывода приведен в примере.

Тесты

Входные данные Выходные данные
2
10 10 10
10 7 6
Case 1: 10.0000
Case 2: 8.0342
3
12 7 7
11 11 8
54 12 6
Case 1: 7.0000
Case 2: 14.0000
Case 3: 19.7383
5
94 21 12
23 9 8
5 4 3
2 2 1
43 26 20
Case 1: 32.1226
Case 2: 10.0439
Case 3: 5.0440
Case 4: 3.0000
Case 5: 32.4231

Код программы

Решение

Для лучшего понимания решения данной задачи, я построил к ней чертеж, который вы можете видеть сверху. Но прежде чем приступить непосредственно к объяснению решения, я хотел бы обратить внимание на то, что мой рисунок (даже без дополнительных построений) немного отличается от данного нам в условии. Эти различия преднамеренны и метод решения справедлив для обоих рисунков.

В $10$ строке введем число $N$ из входного потока, а в $12$ — запустим цикл, который будет работать $N$ раз. Далее за каждый проход цикла будем читать по $3$ следующих числа из входного потока и выводить на экран номер текущего теста. Перед тем, как идти дальше, разберемся в рисунке. Так как по условию отрезок $EF$ делит сегмент $AFB$ пополам, то по свойствам хорд и дуг окружности, он является частью радиуса $r$ нашей окружности с центром в точке $O$ и перпендикулярен хорде $AB$, что и показано на чертеже. Кроме того, я дорисовал радиусы $OA$ и $OB$ окружности к соответствующим точкам и начертил отрезок $BH$, как продолжение $AB$, от точки $B$ до прямой $MN$. Также, я построил прямоугольный треугольник $\triangle OGB$, в котором катет $OG = r-BD$.
Достроив все необходимые отрезки, легко заметить, что мы имеем прямоугольный треугольник $\triangle ACH$ с катетом $AC$, длину которого нам и нужно найти по условию задачи. Предлагаю сделать это, воспользовавшись формулой $AC = AH \cdot \sin(\angle AHC)$. Найдем значения сомножителей.

Из рисунка очевидно, что $\angle AHC = \angle BHD = \angle EBG = \angle OBG-\angle OBE.$
Сначала найдем $\angle OBG$. Для этого рассмотрим треугольник $\triangle OGB$. Длины его гипотенузы и противолежащего к искомому углу катета нам уже известны, так что можем сразу найти $\angle OBG = \arcsin \frac{OG}{OB}$.
Теперь найдем $\angle OBE$. Рассмотрим прямоугольный треугольник $\triangle OEB$. В нем противолежащий искомому углу катет $OE = r-d$, а гипотенуза $OB = r$. Значит, $\angle OBE = \arcsin \frac{OE}{OB}$.
В итоге остаётся только найти разницу этих углов, которая и будет являться величиной искомого $\angle AHC$. В коде же значение этого угла считается в $17$ строке и присваивается переменной a .

Стоит заметить, что если $\angle OBG-\angle OBE = 0$, то длины отрезков $AC$ и $BD$, очевидно, совпадают. В таком случае можем сразу вывести на экран $h_2 = h_1$, как мы и поступили в $19$ строке, и перейти к нахождению $AC$ уже для следующего тестового случая.

Если же величина $\angle AHC$ отлична от $0$, то нам все еще предстоит посчитать длину гипотенузы $AH$ треугольника $\triangle ACH$. Она состоит из хорды $AB$ и отрезка $BH$.
Сперва найдем длину хорды. Известно, что $OF$ делит ее на $2$ одинаковых по длине отрезка, значит, следует опять рассмотреть треугольник $\triangle OEB$. Длину его гипотенузы и одного из катетов мы уже находили, так что просто применим теорему Пифагора и найдем $EB = \sqrt{OB^2-OE^2}$. Тогда $AB = 2 \cdot EB$.
Для нахождения длины $BH$, рассмотрим треугольник $\triangle BDH$, в котором этот отрезок является гипотенузой. Длину катета $BD$ и величину угла $\angle BHD$ мы уже знаем, значит, можем применить формулу $BH = \frac{BD}{\sin(\angle BHD)}$.
Сложим найденные значения длин хорды $AB$ и отрезка $BH$, чтобы получить $AH$. В коде эта длина находится в $22$ строке и присваивается переменной b .

Теперь остается только подставить найденные значения в ранее приведенную формулу и получить наконец длину $h_2$, которую выведем на экран в $23$ строке.

Ссылки

Условие задачи на e-olymp
Код решения на Ideone
Решение этой же задачи на C++