e-olymp 13. Паук и муха

Задача

В пустой прямоугольной комнате размерами $A \times B \times C$ (длина, ширина, высота) на пол упала уснувшая муха. Паук, находившийся на одной из стен, или на полу комнаты, начал двигаться к ней по кратчайшему пути.

На какое расстояние он при этом переместится?

Входные данные

В первой строке заданы размеры комнаты $A$, $B$, $C$. Во второй строке — координаты мухи $X_1$,$Y_1$ и паука $X_2$, $Y_2$, $Z_2$.

Все входные данные — целые числа, не превышающие $500$.

Выходные данные

Единственное число — расстояние, на которое переместится паук, вычисленное с точностью до 2-х знаков после запятой.

Тесты

Входные данные Выходные данные
$3$ $4$ $8$
$0$ $0$ $3$ $4$ $0$
$5.00$
$2$ $2$ $8$
$1$ $1$ $2$ $1$ $4$
$5.00$
$6$ $4$ $3$
$5$ $1$ $0$ $2$ $1$
$6.08$
$30$ $60$ $27$
$13$ $21$ $8$ $0$ $17$
$38.33$
$40$ $40$ $40$
$10$ $5$ $8$ $40$ $37$
$72.03$

Код программы

Решение задачи

Суть решения задачи заключается в переходе от трехмерного пространства комнаты к двумерному с помощью «развёртки» комнаты на координатную плоскость.

Переведя координаты паука в комнате в его новые координаты в двумерном пространстве, все, что нам остается сделать — вычислить кратчайшее расстояние между двумя точками на плоскости с помощью функции $distance$.
В простейшем случае, если паук находится на полу комнаты, т.е. его координата $Z2$ нулевая, координаты паука $X2$ и $Y2$ в точности описывают его положение в координатной плоскости развёртки, и преобразовывать их не требуется.
В противном случае отдельно рассматриваем варианты расположения паука на каждой из стен. В зависимости от того, на какой стене он находится, мы изменяем координаты в соответствии с развёрткой комнаты и находим расстояние от паука до мухи с помощью функции $distance$.
В случае местонахождения паука в каком-либо из углов комнаты, но не на полу, мы должны рассмотреть два варианта его положения в развёртке и найти минимальное из них.

Ссылки

Условие задачи на сайте e-olymp
Код решения задачи

e-olymp 974. Флойд-1

Полный ориентированный взвешенный граф задан матрицей смежности. Постройте матрицу кратчайших путей между его вершинами. Гарантируется, что в графе нет циклов отрицательного веса.

Входные данные

В первой строке записано количество вершин графа n (1 ≤ [latex]n[/latex] ≤ 100). В следующих n строках записано по [latex]n[/latex] чисел — матрица смежности графа ([latex]j[/latex]-ое число в [latex]i[/latex]-ой строке соответствует весу ребра из вершины [latex]i[/latex] в вершину [latex]j[/latex]). Все числа по модулю не превышают 100. На главной диагонали матрицы — всегда нули.

Выходные данные

Выведите [latex]n[/latex] строк по [latex]n[/latex] чисел — матрицу кратчайших расстояний между парами вершин. [latex]j[/latex]-ое число в [latex]i[/latex]-ой строке должно равняться весу кратчайшего пути из вершины [latex]i[/latex] в вершину [latex]j[/latex].

Алгоритм

(взято с Википедии)

Пусть вершины графа [latex]{\displaystyle G=(V,\;E),\;|V|=n}[/latex] пронумерованы от 1 до [latex] {\displaystyle n}[/latex] и введено обозначение [latex]{\displaystyle d_{ij}^{k}}[/latex] для длины кратчайшего пути от [latex] {\displaystyle i}[/latex] до [latex]{\displaystyle j}[/latex], который кроме самих вершин [latex] {\displaystyle i,\;j} [/latex] проходит только через вершины [latex]{\displaystyle 1\ldots k} [/latex]. Очевидно, что [latex]{\displaystyle d_{ij}^{0}} [/latex] — длина (вес) ребра [latex]{\displaystyle (i,\;j)}[/latex], если таковое существует (в противном случае его длина может быть обозначена как [latex]{\displaystyle \infty } [/latex] ).

Существует два варианта значения [latex] {\displaystyle d_{ij}^{k},\;k\in \mathbb {(} 1,\;\ldots ,\;n)} d_{ij}^{k},\;k\in \mathbb {(} 1,\;\ldots ,\;n)[/latex]:

Кратчайший путь между [latex]{\displaystyle i,\;j}[/latex] не проходит через вершину [latex] {\displaystyle k}[/latex], тогда [latex]{\displaystyle d_{ij}^{k}=d_{ij}^{k-1}}[/latex] Существует более короткий путь между [latex]{\displaystyle i,\;j}[/latex], проходящий через [latex]{\displaystyle k}[/latex], тогда он сначала идёт от [latex]{\displaystyle i} [/latex] до [latex] {\displaystyle k} [/latex], а потом от [latex] {\displaystyle k} [/latex] до [latex] {\displaystyle j} [/latex]. В этом случае, очевидно, [latex]{\displaystyle d_{ij}^{k}=d_{ik}^{k-1}+d_{kj}^{k-1}}[/latex]

Таким образом, для нахождения значения функции достаточно выбрать минимум из двух обозначенных значений.

Тогда рекуррентная формула для [latex]{\displaystyle d_{ij}^{k}}[/latex] имеет вид:

[latex]{\displaystyle d_{ij}^{0}}[/latex] — длина ребра [latex] {\displaystyle (i,\;j);} (i,\;j);[/latex] [latex]{\displaystyle d_{ij}^{k}=\min(d_{ij}^{k-1},\;d_{ik}^{k-1}+d_{kj}^{k-1}).}[/latex]

Алгоритм Флойда-Уоршелла последовательно вычисляет все значения [latex]{\displaystyle d_{ij}^{k},} [/latex], [latex]{\displaystyle \forall i,\;j}[/latex] для [latex] {\displaystyle k} [/latex] от 1 до [latex] {\displaystyle n} [/latex]. Полученные значения [latex] {\displaystyle d_{ij}^{n}}[/latex] являются длинами кратчайших путей между вершинами [latex]. {\displaystyle i,\;j.} [/latex].

Код

Условие на e-olymp.com
Решение на e-olymp.com
Код на ideone.com