e-olymp 481. И опять: сколько можно?

Задача

Задано натуральное число [latex]N[/latex]. От данного числа вычтем сумму цифр этого числа, от полученного числа опять вычтем сумму цифр и т.д. Данную операцию будем продолжать до тех пор, пока полученное число положительно. Сколько раз будем выполнять данную операцию?

Входные данные

Во входной строке находится число [latex]N[/latex], которое не превышает [latex]2147483647[/latex].

Выходные данные

Количество выполненных операций.

Тесты

Входные данные Выходные данные
[latex]23[/latex] [latex]3[/latex]
[latex]55555[/latex] [latex]3000[/latex]
[latex]1234567[/latex] [latex]49877[/latex]
[latex]999999999[/latex] [latex]25632473[/latex]
[latex]2147483647[/latex] [latex]54682584[/latex]

Код программы

Решение задачи

Данную задачу можно решить, вычитая от данного числа [latex]N[/latex] суммы цифр, пока само число не станет равным [latex]0[/latex], с помощью циклов. Но этого нам не позволяет ограничение по времени.
Поэтому мы найдем максимально возможное число, которое мы можем получить при вычитании из больших чисел сумм цифр и которое проходит по времени. Это число — [latex]999999999[/latex] (найдено экспериментальным путем). Из него необходимо вычесть суммы цифр [latex]25632473[/latex] раз, чтобы получился [latex]0[/latex].
Тогда из чисел, которые больше данного, достаточно вычитать суммы цифр, пока они не станут равными [latex]999999999[/latex] и прибавить к количеству вычитаний [latex]25632473[/latex].
Если [latex]N[/latex] меньше найденного нами числа, то можно из него просто вычитать суммы цифр, пока оно не станет равным [latex]0[/latex].

Ссылки

Условие задачи на e-olymp
Код решения

e-olymp 8530. Печать матрицы

Задача

Задана матрица $n \times n$ — назовем ее $[1 \ldots n] \times [1 \ldots n]$ массивом. Для заданных $r$ и $c$ следует вывести $[1 \ldots r] \times [1 \ldots c]$ массив ($r$ строк и $c$ столбцов исходного массива).

Входные данные

Первая строка содержит число $n \space (1 \leq n \leq 100)$. Следующие строки содержат матрицу $n \times n$. Последняя строка содержит два числа $r$ и $c \space (1 \leq r, c \leq n)$. Все числа в матрице не превышают по модулю $100$.

Выходные данные

Выведите матрицу $r \times c$.

Тесты

Входные данные Выходные данные
4
1 2 3 4
5 6 7 8
9 1 2 3
4 5 6 7
3 2
1 2
5 6
9 1
5
18 25 34 44 -43
54 65 75 85 -32
95 15 25 35 -3
-4 15 -6 37 0
44 43 23 3 -12
4 3
18 25 34
54 65 75
95 15 25
-4 15 -6
6
30 -10 30 -69 -84 75
-3 -39 60 15 75 -74
36 68 35 23 25 -44
16 42 83 15 59 -18
71 43 35 -81 -38 51
37 -49 55 26 6 33
4 5
30 -10 30 -69 -84
-3 -39 60 15 75
36 68 35 23 25
16 42 83 15 59

Код программы

Решение

Для того, чтобы вывести матрицу на экран, нам нужно запустить $2$ цикла, один из которых будет вложен в предыдущий:

  • первый цикл ($17$ строка кода) будет отвечать за количество выводимых строк матрицы — по условию, нужно вывести первые $r$ строк;
  • второй цикл ($18$ строка кода) будет отвечать за количество выводимых столбцов матрицы — по условию, нужно вывести первые $c$ столбцов.

Ссылки

Условие задачи на e-olymp
Код решения на Ideone
Решение этой же задачи на C++

e-olymp 128. Счастливые билеты

Задача. Подсчитайте количество счастливых билетов, у которых сумма первых трёх цифр равна N(N≤27). Счастливым билетом называется билет с шестизначным номером, у которого сумма первых трёх цифр равна сумме трёх последних.

Тесты

Число N 3 27 26 1 10
Количество билетов 100 1 9 9 3969

Код программы

Код можно увидеть тут.

Алгоритм

Любой шестизначный номер мы можем представить как 2 трехзначных номера.

Рассмотрим все варианты трехзначных номеров. Две первые цифры такого номера могут быть любыми. Переберем все их комбинации с помощью двух вложенных циклов. Для третьей цифры введем специальное условие. Она должна быть результатом вычитания двух первых цифр из [latex]N[/latex], а также быть именно цифрой, то есть меньшей 10.

Когда в цикле встречается подходящая комбинация, мы увеличиваем счетчик [latex]c[/latex] на 1. Поскольку на самом деле номер шестизначный, то каждой удачной комбинации в первой его половине будет соответствовать [latex]c[/latex] комбинаций во второй. Следовательно, искомое число счастливых билетов будет равно [latex]c^2[/latex].

Ссылка на авторское решение задачи.