e-olymp 920. Использование функций min и max

Задача

Задано три вещественных числа [latex]x, y[/latex] и [latex]z[/latex]. Определить [latex]\min\left(\max\left(x,y\right), \max\left(y,z\right), x+y+z\right)[/latex], воспользовавшись вспомогательными функциями для вычисления минимального и максимального элементов из двух заданных.

Входные данные

В одной строке задано три вещественных числа [latex]x, y[/latex] и [latex]z[/latex]. Значения чисел не превышают по модулю [latex]100[/latex].

Выходные данные

Вывести ответ с двумя десятичными знаками.

Тесты

# Входные данные Выходные данные
1  5 6 7  7.00
2  1.05 2.25 -2.15  1.15
3  3 3 3  3
4  8.85 5.67 7.33  7.33
5  12 -15 13  10

Алгоритм решения

  1. Находим максимум из [latex]x[/latex] и [latex]y[/latex].
  2. Находим максимум из [latex]y[/latex] и [latex]z[/latex].
  3. Находим минимум из найденных максимумов.
  4. Находим минимум из найденного минимума и суммы данных чисел.

Условие задачи можно найти на e-olymp
Код решения — ideone

ML11

Условие задачи

Определить время падения камня на поверхность земли с высоты [latex]h[/latex].

Алгоритм решения

Для начала оговорим трактовку условия задачи.

1. Поскольку в условии ничего не говорится про начальную скорость камня, будем считать ее равной нулю.
2. Аналогично в условии ничего не говорится про точность результата. От этого зависит как округление до определенного количества знаков после запятой в выводе, так и то, с какой точностью следует указать ускорение свободного падения, поскольку каноны физики требуют, чтобы ответ на физическую задачу указывался с точностью наимение точно указанного в условии данного. В данном решении я взял значение [latex]g[/latex] свойственное Одессе с точностью 4 значка после запятой. Соответственно, ответ будет выводиться с такой же точностью.
3. Предполагается что высота и время должны указываться в СИ

Тогда наша рабочая формула выглядит следующим образом: \[\sqrt{\frac{2 \cdot h}{g}},\] где \[g = 9.8075 \frac{m}{s^{2}}\] Вводить в программе [latex]g[/latex], как отдельную переменную или константу нет смысла, т.к. она используется только раз. Поэтому в коде вместо [latex]g[/latex] стоит просто ее значение.

Тесты

Высота (м) Время (сек)
1 0 0
2 5 1.0098
3 20 2.0195
4 80 4.0391

Код программы

Код на ideone.com.

Задача оригинал на языке С++(другого автора) на java.mazurok.com.

e-olymp112.Торт

В честь дня рождения наследника Тутти королевский повар приготовил огромный праздничный торт, который был подан на стол Трем Толстякам. Первый толстяк сам мог бы целиком его съесть за $t_1$ часов, второй — за $t_2$ часов, а третий — за $t_3$ часов.

Сколько времени потребуется толстякам, чтобы съесть весь праздничный торт вместе?

Входные данные

Единственная строка содержит три целых неотрицетельных числа $t_1$, $t_2$ и $t_3$, каждое из которых не превосходит $1000$.

Выходные данные

Вывести время в часах, за которое толстяки вместе могут съесть торт. Результат округлить до двух десятичных знаков.

Тесты

$t_1$ $t_2$ $t_3$ $t$
3 3 3 1.00
4 67 50 3.51
228.22 8 2.28 1.76
1577 157.7 15.77 14.21

С ветвлением

 

Без ветвления

Решение с ветвлением

Первый толстяк ест со скоростью один торт за $t_1$ часов. Аналогично и с остальными толстяками. Тогда из торта следует вычесть те части, которые съест каждый, чтобы торта не осталось. Получается уравнение
$1-\frac{t}{t_1}-\frac{t}{t_2}-\frac{t}{t_3}=0;$
$\frac{t}{t_1}+\frac{t}{t_2}+\frac{t}{t_3}=1;$
$\frac{tt_2t_3+tt_1t_3+tt_1t_2}{t_1t_2t_3}=1;$
$t\left(t_1t_2+t_2t_3+t_1t_3\right)=t_1t_2t_3;$
$t = \frac{t_1t_2t_3}{t_1t_2+t_2t_3+t_1t_3};$
Рассматриваем случай, при котором одна из переменных равна нулю, тогда выводим ноль. В противном случае выводим значение $t$ с округлением до сотых.

Решение без ветвления

Так как по условию задачи первый толстяк съедает весь торт за $t_1$ часа, второй — за $t_2$ часа и третий — за $t_3$ часа, то их скорость поедания торта составит $\frac{1}{t_1}$, $\frac{1}{t_2}$ и $\frac{1}{t_3}$ торта в час соответсвенно. Если толстяки будут есть торт одновременно, то в час они будут съедать $\left(\frac{1}{t_1}+\frac{1}{t_2}+\frac{1}{t_3}\right)$ часть торта. Тогда весь торт будет съеден за $\frac{1}{\frac{1}{t_1}+\frac{1}{t_2}+\frac{1}{t_3}}$ часов.
Затем нужно вывести результат, округлённый до двух десятичных знаков.

Ссылки

Ссылка на E-olymp
Ссылка на решение

e-olimp 57. Бабочка-санитар

Задача

e-olimp 57. Бабочка-санитар

e-olimp 57. Бабочка-санитар

Школьники, идя из дому в школу или наоборот — со школы домой, любят кушать конфеты. Но, как всегда, это приятное дело иногда имеет неприятные последствия – детки часто выбрасывают обертки на школьном дворе.
Мурзик всегда следил за чистотой школьного двора и ему в этом с радостью помогали бабочки, благодарные за прекрасные фотографии, сделанные им. Бабочки могли использовать собственные крылышки как линзы, причем они могли изменять их фокусное расстояние. Заметив обертку от конфетки, лежавшую на школьном дворе в точке с координатами $X_{1}$ $Y_{2}$, бабочка перелетала в точку с координатами $X_{2}$, $Y_{2}$, $Z_{2}$, расположенную на пути солнечных лучей к обертке и, изменяя фокусное расстояние своих крылышек-линз, сжигали обертку от конфеты.
Какую оптическую силу $D$ имели крылышки-линзы бабочки в этот момент?

Входные данные

В первой строке 2 числа: координаты $X_{1}$, $Y_{1}$ обертки от конфетки. Во второй – 3 числа: координаты $X_{2}$, $Y_{2}$, $Z_{2}$ бабочки в момент сжигания обертки.
Все входные данные целые числа, не превышающие по модулю 1000.

Выходные данные

Единственное число – оптическая сила крылышек-линз D, вычисленная с точностью до 3-х знаков после запятой за правилами математических округлений.

Тесты

ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
10 20
10 20 100
0.010
600 400
300 867 409
0.001
30 50
1000 1000 1000
0.001
60 21
11 44 -7
0.018

Код программы

Решение задачи

$F=\sqrt{(x-x_{1})^{2} + (y-y_{1})^{2} + z^{2}}$ — формула для нахождения расстояния между двумя точками пространства. По этой формуле находим фокусное расстояние между крыльями-линзами и бумажкой. Оптическая сила линзы $\frac{1}{F}$, где $F$ — фокусное расстояние.

Этой строкой кода мы выводим оптическую силу линзы с точностью до трех знаков после запятой.
Условие задачи на e-olimp
Код решения ideon

e-olymp 51. К-домино

Задача

ДоминоРаботник отдела технического контроля любил выбраковывать «доминошки», которые содержали одинаковые значения. Так как на предприятии, выпускающем [latex]K[/latex]-домино, этого не знали, к нему постоянно поступали претензии на сумму, равную стоимости [latex]K[/latex]-домино. Стоимость [latex]K[/latex]-домино составляла ровно столько гривен, сколько было в купленном покупателем наборе доминошек.Для того, чтобы его не уволили с работы, работник ОТК выбраковывал иногда не только все не любимые «доминошки», а несколько больше, но не более половины гарантированно выбраковыванных.Зная сумму претензии, пришедшей на предприятие, установите, какой из наборов [latex]K[/latex]-домино был куплен покупателем.

Входные данные

Единственное число [latex]S[/latex] – сумма претензии, пришедшей на предприятие, [latex]S ≤ 2000000000[/latex].

Выходные данные

Единственное число – индекс [latex]K[/latex] купленного покупателем [latex]K[/latex]-домино.

Входные данные Выходные данные
1 5 3
2 10 4
3 1000000 1414
4 555666777888 1054198
5 13 5

Код программы

Решение

[latex]K[/latex]-домино — набор домино с минимальным количеством точек на одной из половин доминошки.
Количество дублей, то есть количество точно выбракованных доминошек — [latex]k[/latex]+1. Общее количество доминошек [latex]k[/latex]-домино:$$(k+1){{k+2}\over{2}}$$
Пусть работник дополнительно выбраковывал [latex]e[/latex] доминошек. [latex]s[/latex] — сумма претензии, тогда имеем:

[latex]k+1+e+s= (k+1){{k+2}\over{2}}[/latex]  
[latex]k^2<=2s+1[/latex]  
[latex]k=[\sqrt{2s+1}][/latex]

Ссылки

Ссылка на e-olymp.
Ссылка на Ideone

e-olymp 924. Кольцо


Заданы площадь кольца и радиус внешней окружности. Определить радиус внутренней окружности.

Входные данные

В одной строке заданы два вещественных числа: площадь кольца и радиус внешней окружности, величина которой не превышает $100$.

Выходные данные

Вывести радиус внутренней окружности с 2 десятичными знаками.

Тесты

S $R$ $r$
50.2655 5 3.00
45 8 7.05
73.07 7.7 6.00
83.5 34 33.61

Решение

Для начала стоит напомнить, что площадь круга вычисляется по формуле $S=\pi R^2$.
С клавиатуры вводится площадь кольца $S$ и радиус большей окружности $R$
Зная значение радиуса большей окружности, можно найти площадь большего круга $S_R = \pi R^2$
Зная, что площадь малого круга и площадь кольца образуют площадь большого круга, найдём площадь малого круга $S_r = S_R — S$
Далее находим радиус малой окружности $r$ по формуле $r=\sqrt\frac{S_r}{\pi}$

Ссылки

Ссылка на E-olymp
Ссылка на решение

e-olymp 7612. Алекс и квадраты оригами

Задача

Алекс любит оригами — японское искусство складывания из бумаги. Большинство конструкций оригами начинаются с квадратного листа бумаги. Алекс собирается сделать подарок для своей матери. Подарочная конструкция требует три одинаковых квадратных листа бумаги, но у Алекса имеется только один прямоугольный лист. Он может из него вырезать квадраты, стороны которых должны быть параллельны сторонам листа. Помогите Алексу определить максимально возможный размер квадратов, который он способен вырезать.

Входные данные

В одной строке два целых числа $h$ и $w$ $(1 \leq h,w\leq 1000)$ — высота и ширина куска бумаги.

Выходные данные

Выведите одно действительное число — наибольшую длину стороны квадратов. Всегда можно вырезать три одинаковых квадрата из листа бумаги размером $h \times w$ так, чтобы их стороны были параллельны сторонам листа.

Ответ следует вывести с точностью не меньше трех десятичных знаков.

Тесты

Входные данные Выходные данные
$100$ $100$ $50.000$
$10$ $80$ $10.000$
$50$ $76$ $25.333$
$60$ $27$ $20.000$
$8$ $3$ $2.667$

Код программы

Решение задачи

Существует два варианта оптимального расположения трех квадратов — три в один ряд,

или же два, соприкасающихся одной стороной, и третий над ними

Обозначим за $a$ меньшую сторону листа бумаги, а за $b$ — большую. Если a не больше $\frac{b}{3}$, то оптимальным расположением квадратов в прямоугольнике будет первый вариант, а наибольшей возможной стороной квадратов является меньшая сторона листа бумаги $a$. В противном случае рассмотрим два варианта:

  1. Если $\frac{a}{2} < \frac{b}{3}$, то квадраты будут располагаться в прямоугольнике первым способом, и ответом будет служить число $\frac{a}{2}$.
  2. Иначе квадраты будут располагаться в прямоугольнике вторым способом, и ответом будет служить число $\frac{b}{3}$.

Таким образом, в случае $a > \frac{b}{3}$ ответом будет служить большее из двух чисел $\frac{a}{2}$ и $\frac{b}{3}$. Mинимальное из $\max \left(\frac{a}{2},\frac{b}{3} \right)$ и $a$ число и будет ответом.
Проверим нашу формулу:если $a < \frac{b}{3}$, то $\max \left(\frac{a}{2},\frac{b}{3} \right) = \frac{b}{3}$, и тогда $\min \left( a,\max \left(\frac{a}{2},\frac{b}{3} \right) \right) = a$. Иначе $\min \left( a,\max \left(\frac{a}{2},\frac{b}{3} \right) \right) = \max \left(\frac{a}{2},\frac{b}{3}\right)$, что нам и требуется.

Ссылки

Условие задачи на сайте e-olymp
Код решения

e-olymp 2262. Явная формула

h1>Задача

Дано 10 булевых переменных [latex] x_{1},\:x_{2},\:x_{3} ,\:x_{4},\:x_{5},\:x_{6},\:x_{7},\:x_{8},\:x_{9},\:x_{10} [/latex]. Вычислите количество пар и троек, у которых хотя бы одна переменная установлена в [latex]1[/latex]. Установим [latex]f( x_{1},\:x_{2},\:x_{3} ,\:x_{4},\:x_{5},\:x_{6},\:x_{7},\:x_{8},\:x_{9},\:x_{10}) = 1[/latex] если это количество нечетно и [latex]f( x_{1},\:x_{2},\:x_{3} ,\:x_{4},\:x_{5},\:x_{6},\:x_{7},\:x_{8},\:x_{9},\:x_{10}) = 0[/latex] если количество четно.
Рассмотрим явную формулу, которая реализует функцию [latex]f( x_{1},\:x_{2},\:x_{3} ,\:x_{4},\:x_{5},\:x_{6},\:x_{7},\:x_{8},\:x_{9},\:x_{10}):[/latex] [latex]f( x_{1},\:x_{2},\:x_{3} ,\:x_{4},\:x_{5},\:x_{6},\:x_{7},\:x_{8},\:x_{9},\:x_{10}) = [/latex] [latex] \left( x_{1}\vee x_{2} \right) \oplus \left( x_{1}\vee x_{3} \right) \oplus \left( x_{1}\vee x_{4} \right)\oplus \left( x_{1}\vee x_{5} \right)
\oplus \left( x_{1}\vee x_{6} \right) \oplus \left( x_{1}\vee x_{7} \right) \oplus \left( x_{1}\vee x_{8} \right) \\
\oplus \left( x_{1}\vee x_{9} \right) \oplus \left( x_{1}\vee x_{10} \right) \oplus \left( x_{2}\vee x_{3} \right)
\oplus \left( x_{2}\vee x_{4} \right) \oplus \left( x_{2}\vee x_{5} \right) \oplus \left( x_{2}\vee x_{6} \right) \\
\oplus \left( x_{2}\vee x_{7} \right) \oplus \left( x_{2}\vee x_{8} \right) \oplus \left( x_{2}\vee x_{9} \right)
\oplus \left( x_{2}\vee x_{10} \right) \oplus \left( x_{3}\vee x_{4} \right) \oplus \left( x_{3}\vee x_{5} \right) \\
\oplus \left( x_{3}\vee x_{6} \right) \oplus \left( x_{3}\vee x_{7} \right) \oplus \left( x_{3}\vee x_{8} \right)
\oplus \left( x_{3}\vee x_{9} \right) \oplus \left( x_{3}\vee x_{10} \right) \oplus \left( x_{4}\vee x_{5} \right) \\
\oplus \left( x_{4}\vee x_{6} \right) \oplus \left( x_{4}\vee x_{7} \right) \oplus \left( x_{4}\vee x_{8} \right)
\oplus \left( x_{4}\vee x_{9} \right) \oplus \left( x_{4}\vee x_{10} \right) \oplus \left( x_{5}\vee x_{6} \right) \\
\oplus \left( x_{5}\vee x_{7} \right) \oplus \left( x_{5}\vee x_{8} \right) \oplus \left( x_{5}\vee x_{9} \right)
\oplus \left( x_{5}\vee x_{10} \right) \oplus \left( x_{6}\vee x_{7} \right) \oplus \left( x_{6}\vee x_{8} \right) \\
\oplus \left( x_{6}\vee x_{9} \right) \oplus \left( x_{6}\vee x_{10} \right) \oplus \left( x_{7}\vee x_{8} \right)
\oplus \left( x_{7}\vee x_{9} \right) \oplus \left( x_{7}\vee x_{10} \right) \oplus \left( x_{8}\vee x_{9} \right) \\
\oplus \left( x_{8}\vee x_{10} \right) \oplus \left( x_{9}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{2}\vee x_{3} \right)
\oplus \left( x_{1}\vee x_{2}\vee x_{4} \right) \oplus \left( x_{1}\vee x_{2}\vee x_{5} \right) \\ \oplus \left( x_{1}\vee x_{2}\vee x_{6} \right)
\oplus \left( x_{1}\vee x_{2}\vee x_{7} \right) \oplus \left( x_{1}\vee x_{2}\vee x_{8} \right) \oplus \left( x_{1}\vee x_{2}\vee x_{9} \right)
\oplus \\ \left( x_{1}\vee x_{2}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{3}\vee x_{4} \right) \oplus \left( x_{1}\vee x_{3}\vee x_{5} \right)
\oplus \left( x_{1}\vee x_{3}\vee x_{6} \right) \oplus \\ \left( x_{1}\vee x_{3}\vee x_{7} \right) \oplus \left( x_{1}\vee x_{3}\vee x_{8} \right)
\oplus \left( x_{1}\vee x_{3}\vee x_{9} \right) \oplus \left( x_{1}\vee x_{3}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{4}\vee x_{5} \right) \\
\oplus \left( x_{1}\vee x_{4}\vee x_{6} \right) \oplus \left( x_{1}\vee x_{4}\vee x_{7} \right) \oplus \left( x_{1}\vee x_{4}\vee x_{8} \right)
\oplus \left( x_{1}\vee x_{4}\vee x_{9} \right) \oplus \\ \left( x_{1}\vee x_{4}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{5}\vee x_{6} \right)
\oplus \left( x_{1}\vee x_{5}\vee x_{7} \right) \oplus \left( x_{1}\vee x_{5}\vee x_{8} \right) \oplus \left( x_{1}\vee x_{5}\vee x_{9} \right) \\
\oplus \left( x_{1}\vee x_{5}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{6}\vee x_{7} \right) \oplus \left( x_{1}\vee x_{6}\vee x_{8} \right)
\oplus \left( x_{1}\vee x_{6}\vee x_{9} \right) \\ \oplus \left( x_{1}\vee x_{6}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{7}\vee x_{8} \right)
\oplus \left( x_{1}\vee x_{7}\vee x_{9} \right) \oplus \left( x_{1}\vee x_{7}\vee x_{10} \right) \oplus \\ \left( x_{1}\vee x_{8}\vee x_{9} \right)
\oplus \left( x_{1}\vee x_{8}\vee x_{10} \right) \oplus \left( x_{1}\vee x_{9}\vee x_{10} \right) \oplus \left( x_{2}\vee x_{3}\vee x_{4} \right)
\oplus \left( x_{2}\vee x_{3}\vee x_{5} \right) \\ \oplus \left( x_{2}\vee x_{3}\vee x_{6} \right) \oplus \left( x_{2}\vee x_{3}\vee x_{7} \right)
\oplus \left( x_{2}\vee x_{3}\vee x_{8} \right) \oplus \left( x_{2}\vee x_{3}\vee x_{9} \right) \oplus \\ \left( x_{2}\vee x_{3}\vee x_{10} \right)
\oplus \left( x_{2}\vee x_{4}\vee x_{5} \right) \oplus \left( x_{2}\vee x_{4}\vee x_{6} \right) \oplus \left( x_{2}\vee x_{4}\vee x_{7} \right)
\oplus \left( x_{2}\vee x_{4}\vee x_{8} \right) \\ \oplus \left( x_{2}\vee x_{4}\vee x_{9} \right) \oplus \left( x_{2}\vee x_{4}\vee x_{10} \right)
\oplus \left( x_{2}\vee x_{4}\vee x_{6} \right) \oplus \left( x_{2}\vee x_{5}\vee x_{6} \right) \oplus \left( x_{2}\vee x_{5}\vee x_{7} \right) \\
\oplus \left( x_{2}\vee x_{5}\vee x_{8} \right) \oplus \left( x_{2}\vee x_{5}\vee x_{9} \right) \oplus \left( x_{2}\vee x_{5}\vee x_{10} \right)
\oplus \left( x_{2}\vee x_{6}\vee x_{7} \right) \oplus \left( x_{2}\vee x_{6}\vee x_{8} \right) \\ \oplus \left( x_{2}\vee x_{6}\vee x_{9} \right)
\oplus \left( x_{2}\vee x_{6}\vee x_{10} \right) \oplus \left( x_{2}\vee x_{7}\vee x_{8} \right) \oplus \left( x_{2}\vee x_{7}\vee x_{9} \right)
\oplus \left( x_{2}\vee x_{7}\vee x_{10} \right) \\ \oplus \left( x_{2}\vee x_{8}\vee x_{9} \right) \oplus \left( x_{2}\vee x_{8}\vee x_{10} \right)
\oplus \left( x_{2}\vee x_{9}\vee x_{10} \right) \oplus \left( x_{3}\vee x_{4}\vee x_{5} \right) \oplus \left( x_{3}\vee x_{4}\vee x_{6} \right) \\
\oplus \left( x_{3}\vee x_{4}\vee x_{7} \right) \oplus \left( x_{3}\vee x_{4}\vee x_{8} \right) \oplus \left( x_{3}\vee x_{4}\vee x_{9} \right)
\oplus \left( x_{3}\vee x_{4}\vee x_{10} \right) \oplus \left( x_{3}\vee x_{5}\vee x_{6} \right) \\ \oplus \left( x_{3}\vee x_{5}\vee x_{7} \right)
\oplus \left( x_{3}\vee x_{5}\vee x_{8} \right) \oplus \left( x_{3}\vee x_{5}\vee x_{9} \right) \oplus \left( x_{3}\vee x_{5}\vee x_{10} \right)
\oplus \left( x_{3}\vee x_{6}\vee x_{7} \right) \\ \oplus \left( x_{3}\vee x_{6}\vee x_{8} \right) \oplus \left( x_{3}\vee x_{6}\vee x_{9} \right)
\oplus \left( x_{3}\vee x_{6}\vee x_{10} \right) \oplus \left( x_{3}\vee x_{7}\vee x_{8} \right) \\ \oplus \left( x_{3}\vee x_{7}\vee x_{9} \right)
\oplus \left( x_{3}\vee x_{7}\vee x_{10} \right) \oplus \left( x_{3}\vee x_{8}\vee x_{9} \right) \oplus \left( x_{3}\vee x_{8}\vee x_{10} \right)
\oplus \left( x_{3}\vee x_{9}\vee x_{10} \right) \\ \oplus \left( x_{4}\vee x_{5}\vee x_{6} \right) \oplus \left( x_{4}\vee x_{5}\vee x_{7} \right)
\oplus \left( x_{4}\vee x_{5}\vee x_{8} \right) \oplus \left( x_{4}\vee x_{5}\vee x_{9} \right) \oplus \left( x_{4}\vee x_{5}\vee x_{10} \right) \\
\oplus \left( x_{4}\vee x_{6}\vee x_{7} \right) \oplus \left( x_{4}\vee x_{6}\vee x_{8} \right) \oplus \left( x_{4}\vee x_{6}\vee x_{9} \right)
\oplus \left( x_{4}\vee x_{6}\vee x_{10} \right) \oplus \left( x_{4}\vee x_{7}\vee x_{8} \right) \\ \oplus \left( x_{4}\vee x_{7}\vee x_{9} \right)
\oplus \left( x_{4}\vee x_{7}\vee x_{10} \right) \oplus \left( x_{4}\vee x_{8}\vee x_{9} \right) \oplus \left( x_{4}\vee x_{8}\vee x_{10} \right) \\
\oplus \left( x_{4}\vee x_{9}\vee x_{10} \right) \oplus \left( x_{5}\vee x_{6}\vee x_{7} \right) \oplus \left( x_{5}\vee x_{6}\vee x_{8} \right)
\oplus \left( x_{5}\vee x_{6}\vee x_{9} \right) \oplus \left( x_{5}\vee x_{6}\vee x_{10} \right) \\ \oplus \left( x_{5}\vee x_{7}\vee x_{8} \right)
\oplus \left( x_{5}\vee x_{7}\vee x_{9} \right) \oplus \left( x_{5}\vee x_{7}\vee x_{10} \right) \oplus \left( x_{5}\vee x_{8}\vee x_{9} \right)
\oplus \left( x_{5}\vee x_{8}\vee x_{10} \right) \\ \oplus \left( x_{5}\vee x_{9}\vee x_{10} \right) \oplus \left( x_{6}\vee x_{7}\vee x_{8} \right)
\oplus \left( x_{6}\vee x_{7}\vee x_{9} \right) \oplus \left( x_{6}\vee x_{7}\vee x_{10} \right) \oplus \left( x_{6}\vee x_{8}\vee x_{9} \right) \\
\oplus \left( x_{6}\vee x_{8}\vee x_{10} \right) \oplus \left( x_{6}\vee x_{8}\vee x_{9} \right) \oplus \left( x_{6}\vee x_{8}\vee x_{10} \right)
\oplus \left( x_{6}\vee x_{9}\vee x_{10} \right) \\ \oplus \left( x_{7}\vee x_{8}\vee x_{9} \right) \oplus \left( x_{7}\vee x_{8}\vee x_{10} \right)
\oplus \left( x_{7}\vee x_{9}\vee x_{10} \right) \oplus \left( x_{8}\vee x_{9}\vee x_{10} \right) \\
[/latex]

Входные данные

Содержит [latex]10[/latex] чисел [latex] x_{1},\ x_{2},\ x_{3} ,\ x_{4},\ x_{5},\ x_{6},\ x_{7},\ x_{8},\ x_{9},\ x_{10} [/latex]. Каждое из них равно [latex]0[/latex] или [latex]1[/latex].

Выходные данные

Вывести единственное значение [latex]f( x_{1}, \ x_{2},\ x_{3} ,\ x_{4},\ x_{5},\ x_{6},\ x_{7},\ x_{8},\ x_{9},\ x_{10}).[/latex]

Тесты

Входные данные Выходные данные
1 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 1
1 0 1 0 1 0 1 0 1 0 1

Решение

Рассмотрим все возможные пары и тройки разных переменных из этих десяти (всего существует [latex]45[/latex] пар и [latex]120[/latex] троек). Данная формула реализует функцию [latex]f( x_{1},\ x_{2},\ x_{3} ,\ x_{4},\ x_{5},\ x_{6},\ x_{7},\ x_{8},\ x_{9},\ x_{10}) [/latex]. В указанной формуле бинарные операции обозначаются «[latex]\vee[/latex]» и «[latex]\oplus[/latex]», где «[latex]\vee[/latex]» — логическое или , а «[latex]\oplus[/latex]» — исключающее или

Ссылки

e-olymp
Ideone

e-olymp 2071. Три грибника

Задача

Три грибника

Три грибника

Три грибника Петя, Вася и Николай, возвращаясь из лесу домой, решили устроить привал, а заодно и перекусить. Как это у нас принято, через некоторое время каждый начал сначала хвастаться своими сегодняшними успехами, а со временем, а так все трое были друзьями, то вскоре начали делить найденными ими грибы между собой и своими товарищами.

Сначала Пётр дал Васе и Николаю по столько грибов, сколько у них уже было. Николай быстро понял, что так будет не по-братски, и дал Василию и Петру по столько грибов, по сколько у них стало. Василий не мог отстать от сотоварищей и также дал каждому из друзей по столько грибов, сколько у них этому моменту имелось. И тут друзья с удивлением обнаружили, что у всех стало грибов поровну.

Сколько грибов было у каждого перед привалом, если известно, что все вместе они собрали [latex]n[/latex] грибов?

Входные данные

В единственной строке находится единственное натуральное число [latex]n[/latex] ([latex]n ≤ 30000[/latex]).

Выходные данные

В единственной строке вывести через пробел количество грибов перед привалом у Петра, Василия и Николая, соответственно. Гарантируется, что все входные данные корректны.

Тесты

Входные данные
Выходные данные
[latex]24[/latex] [latex]13[/latex] [latex]4[/latex] [latex]7[/latex]
[latex]48[/latex] [latex]26[/latex] [latex]8[/latex] [latex]14[/latex]
[latex]72[/latex] [latex]39[/latex] [latex]12[/latex] [latex]21[/latex]
[latex]96[/latex] [latex]52[/latex] [latex]16[/latex] [latex]28[/latex]
[latex]120[/latex] [latex]65[/latex] [latex]20[/latex] [latex]35[/latex]
[latex]144[/latex] [latex]78[/latex] [latex]24[/latex] [latex]42[/latex]

Код программы

Решение задачи

Представим нашу задачу в форме таблицы, строки которой будут соответствовать грибникам, а столбцы — количеству грибов у соответствующего грибника между обменами:

П.
[latex]x_{1}[/latex] [latex]x_{2} = x_{1} — y_{1} — z_{1}[/latex] [latex]x_{3} = 2 \cdot x_{2}[/latex] [latex]x_{4} = 2 \cdot x_{3}[/latex]
В.
[latex]y_{1}[/latex] [latex]y_{2} = 2 \cdot y_{1}[/latex] [latex]y_{3} = 2 \cdot y_{2}[/latex] [latex]y_{4} = y_{3} — x_{3} — z_{3}[/latex]
Н.
[latex]z_{1}[/latex] [latex]z_{2} = 2 \cdot z_{1}[/latex] [latex]z_{3} = z_{2} — x_{2} — y_{2}[/latex] [latex]z_{4} = 2 \cdot x_{3}[/latex]

По условию задачи [latex]x_{4} = y_{4} = z_{4} = \frac n 3[/latex]. Тогда выражением нужных корней и подстановкой известных считаем [latex]x_{1}[/latex], [latex]y_{1}[/latex] и [latex]z_{1}[/latex] начиная с правого столбца и двигаясь налево:

[latex]x_{3} = \frac {x_{4}}{2} = \frac {n}{6}[/latex]
[latex]z_{3} = \frac {z_{4}}{2} = \frac {n}{6}[/latex]
[latex]y_{3} = y_{4} + x_{3} + z_{3}= \frac {n}{3} + \frac {n}{6} + \frac {n}{6} = \frac {2 \cdot n}{6}[/latex]
[latex]x_{2} = \frac {x_3}{2} = \frac {n} {12}[/latex]
[latex]y_{2} = \frac {y_3}{2} = \frac {n}{3}[/latex]
[latex]z_{2} = z_{3} + y_{2} + x_{2} = \frac {n}{6} + \frac {n}{12} + \frac {n}{3} = \frac {7 \cdot n}{12}[/latex]
[latex]y_{1} = \frac {y_{2}}{2} = \frac {n}{6}[/latex]
[latex]z_{1} = \frac {z_2}{2} = \frac {7 \cdot n}{24}[/latex]
[latex]x_{1} = x_{2} + y_{1} + z_{1} = \frac {n}{12} + \frac {n}{6} + \frac {6 \cdot n}{12} = \frac {13 \cdot n}{24}[/latex]

Получили ответы: [latex]x_{1} = \frac {13 \cdot n}{24}[/latex],  [latex]y_{1} = \frac {n}{6}[/latex] и [latex]z_{1} = \frac {7 \cdot n}{24}[/latex]. Это и будет количество грибов соответственно у Пети, Васи и Николая в самом начале. Отсюда получаем итоговую формулу решения, указанную в коде программы.

Ссылки

Условие задачи на e-olymp
Код решения на ideone.com

e-olymp 519. Сумма квадратов

Условие задачи
Найти сумму квадратов двух чисел.
Входные данные
Два целых числа $a$ и $b$. Числа не превышают $10^9$ по абсолютной величине.
Выходные данные
Выведите одно целое число $a^2+b^2$
Тесты

Входные данные Выходные данные
2 2
8
5 5
50
-5 -2
29
500 500
500000
1210 1250
3026600

Код программы

Решение задачи
Создаем 2 переменные a и b, в которые записываем данные, дальше выводим на экран одно целое число, которое равно $a^2+b^2$.
Ссылки
Задача на сайте e-olymp
Код решения в Ideone