e-olymp 4439. Возведение в степень

Задача

Вычислить значение $a^b$.

Входные данные

Два натуральных числа $a$ и $b$.

Выходные данные

Выведите значение $a^b$, если известно что оно не превосходит $10^{18}$.

Тесты

ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
 1 1 100 1
 2 2 10 1024
 3 3 7 2187
 4 8 9 134217728
 5 10 10 10000000000
 6 100 9 1000000000000000000

Код

Решение

Для решения задачи создадим функцию «pow()», заметим, что для любого числа $a$ и чётного числа $b$ выполнимо очевидное тождество (следующее из ассоциативности операции умножения):
$$a^b = \left(a^2\right)^{\frac{b}{2}}= \left(a\cdot a\right)^{\frac{b}{2}}$$
Оно и является основным в методе бинарного возведения в степень. Действительно, для чётного $b$ мы показали, как, потратив всего одну операцию умножения, можно свести задачу к вдвое меньшей степени.
Осталось понять, что делать, если степень b нечётна. Здесь мы поступаем очень просто: перейдём к степени b-1, которая будет уже чётной:
$$a^b = a^{b-1} \cdot a$$
Итак, мы фактически нашли рекуррентную формулу: от степени $b$ мы переходим, если она чётна, к $\frac{b}{2}$, а иначе — к $b-1$.

Примечание

Задача требует использование быстрого алгоритма, так как прямое умножение $b$ раз для возведение в $b$-ю слишком медленно, из-за большого количества перемножений. Алгоритм быстрого возведения в степень — это предназначенный для возведения числа в натуральную степень за меньшее число умножений, чем это требуется в определении степени.

Ссылки

Условие задачи на e-olymp
Код на Ideone
Засчитанное решение на e-olymp

e-olymp 8283. Музыка

Задача

Малыши и малышки очень любили музыку, а Гусля был замечательный музыкант. У него были разные музыкальные инструменты, и он часто играл на них. Их было много, поэтому он развесил их на стенах своей комнаты. Инструмент, расположенный справа от входной двери имел номер $1$, дальше они нумеровались по кругу, а последний инструмент с номером $n$ висел слева от этой двери.

Малыши часто просили его научить играть на каком-нибудь инструменте. Гусля не отказывал, но сначала предлагал взять инструмент с первым номером, а если ученику хотелось играть на другом, то он выбирал шестой следующий по кругу и так далее. Напишите программу, которая определяла номер попытки, с которой ученик мог получить желаемый инструмент с номером $k$.

Например, если количество инструментов $n = 11$, то последовательность будет следующей: $(1) 2 3 4 5 6 (7) 8 9 10 11 1 (2) 3 4 5 6 7 (8) 9 10 11 1 2 (3) 4 5$ …, то есть при $k = 3$ инструмент с номером $3$ можно было бы получить с пятой попытки.

Входные данные

Два натуральных числа $n$ и $k$ $(1 \leqslant k \leqslant n \leqslant 100)$.

Выходные данные

Вывести номер попытки, в который «выпадал» инструмент с номером $k$. Если это никогда не происходило, следует вывести $0$.

Тесты

Входные данные Выходные данные
1 11 3 5
2 6 2 0
3 13 13 3
4 9 8 0
5 5 5 5

Код

Решение

Для решения задачи нам необходимо рассмотреть ряд натуральных чисел, начиная с единицы и прибавляя каждый раз $6$. С помощью операции деления с остатком мы можем реализовать алгоритм нахождения номера музыкального инструмента. Однако логика решения изменяется в зависимости от введенных пользователем данных. Имеется два случая:

  1. Если пользователь вводит разные числа.
  2. Если пользователь вводит одинаковые числа.

В первом случае мы рассматриваем две ситуации:
1) если пользователь вводит количество инструментов $6$, то единственным решением будет инструмент под номером $1$, так как Гусля выбирает инструменты через $6$ штук по кругу;
2) если количество инструментов не равно $6$ то мы реализовываем алгоритм нахождения номера путем деления с остатком, а именно: если текущее число при делении на количество инструментов не дает в остатке искомый номер, мы прибавляем $1$ к числу попыток, а число увеличиваем на $6$, в противном случае мы нашли число попыток.
Еще здесь, так же, как и во втором случае, есть подводный камень: если мы уже сделали какое-то количество попыток и текущее число при делении на количество инструментов дает в остатке $1$, мы никогда не попадем на нужный нам номер инструмента.

Во втором случае мы также рассматриваем две ситуации:
1) если количество инструментов делится нацело на $2$, то нам никогда не выпадет нужный инструмент;
2) если текущее число при делении на количество инструментов не дает в остатке $0$, мы прибавляем $1$ к числу попыток, а число увеличиваем на $6$, в противном случае ответ найден.
Также не забываем про подводный камень, указанный выше.

Ссылки

  • Условие задачи на e-olymp
  • Код программы на ideone.com
  • Засчитанное решение на e-olymp

Ю1.19

Условие задачи

Найти координаты вершины параболы \[y = ax^{2}+bx+c\]

Алгоритм решения

Мы знаем координаты вершины параболы вычисляются по формулам:

1) \[x_{0} = — \frac{b}{2 \cdot a}\] 2) \[y_{0} = ax_{0}^{2}+bx_{0}+c\]

(Для простоты в программе [latex]x_{0}[/latex] и [latex]y_{0}[/latex] заменены на [latex]x[/latex] и [latex]y[/latex] соответственно).

Теперь учтем ситуации в проработке которых могут возникнуть сложности:
Если [latex]a=0[/latex], то график [latex]y(x)[/latex] не является параболой, о чем на должен проинформировать компилятор. Это все проблемы связанные с графиком.

Это все сложности которые могут повстречаться на на пути реализации данной программы, так ничего не мешает нам написать данную программу.

Тесты

[latex]a[/latex] [latex]b[/latex] [latex]c[/latex] [latex]x[/latex] [latex]y[/latex] Комментарий
-1 -2 -3 1 -4 Пройден
0 2 2 Не пройден так график [latex]y(x)[/latex] не является параболой и программа оповещает об ошибке
1 0 4 0 4 Пройден
2 1 3 -0.25 2.875 Пройден

Код программы

Код на ideone.com.

Задача оригинал на языке С++(другого автора) на java.mazurok.com.

A60г

Задача:
Пусть [latex]D[/latex] — заштрихованная часть плоскости и пусть [latex]u[/latex] определяется по [latex]x[/latex] и [latex]y[/latex] yследующим образом: [latex] u=\begin{cases}x^(2)-1;\text{if}(x,y)\in D \\\sqrt{\left| x-1\right|};\text{ another case }\end{cases}[/latex] (запись[latex](x,y)\in D[/latex] означает, что точка с координатами [latex]x,y[/latex] принадлежит [latex]D[/latex]).

Даны действительные числа [latex]x[/latex] и [latex]y[/latex]. Определить [latex]u.[/latex]

a60%d0%b3
Тесты:

ВХОД ВЫХОД
[latex]x[/latex] [latex]y[/latex] [latex]u[/latex]
1 0.3 0.3 0.836660
2 1 1 0.000000
3 2 2 1.000000
4 0 0 -1.000000

Код:

Решение:
Для решения задачи проверим не принадлежит ли выбранная точка полуплоскости [latex]y<0.[/latex] Затем следует проверить не лежит ли выбранная точка вне полукруга, радиус которого равен 1 . Следующим действием нужно проверить не находиться ли точка в вырезанной четвертине маленького круга, радиус которого равен 0.3.

Версия программы на Ideone.com

Ссылка на источник

e-olymp 109. Нумерация

Постановка задачи

Для нумерации  $latex m$ страниц книги использовали $latex n$ цифр. По заданному $latex n$ вывести $latex m$ или $latex 0$, если решения не существует. Нумерация начинается с первой страницы.

Входные данные

Единственное число n. В книге не более 1001 страницы.

Выходные данные

Искомое количество страниц.

Тесты

Входные данные Выходные данные
1 27 18

Код

 

Описание решения

Для решения данной задачи необходимо использовать переменную с целочисленным значением, которое соответствует количеству цифр использованных для нумерации страниц. Вводим переменную и выводим, какому количеству страниц соответствует данная величина используя логарифм по основанию $latex 10$.

Посмотреть, как работает программа со входными данными 27 можно на сайте  ideone.
Задача решена на основе данного решения.

e-olymp 923. Время года

Постановка задачи

Определить название времени года по заданному номеру месяца, используя составные условия.

Входные данные

Одно число — номер месяца.

Выходные данные

Для весенних месяцев вывести Spring, для летних — Summer, для осенних — Autumn и для зимних — Winter.

Тесты

Входные данные Выходные данные
1 5 Spring

Код

 

Описание решения

Для решения данной задачи необходимо использовать переменную с целочисленным значением, которое соответствует порядковому номера месяца (от $latex 1$ до $latex 12$ включительно). Вводим переменную и выводим, какому времени года принадлежит введённый нами месяц, поочерёдно проверяя, какому из условий удовлетворяет переменная.

 

Посмотреть, как работает программа со входными данными $latex 12$ можно на сайте  ideone.

КМ259(б). Квартеты из клеток

Задача

Назовем квартетом четверку клеток на клетчатой бумаге, центры которых лежат в вершинах прямоугольника со сторонами, параллельными линиям сетки. Какое наибольшее число квартетов, не имеющих общих клеток, можно разместить на прямоугольнике [latex]mn[/latex] клеток?

Входные данные

[latex]m, n[/latex]

Вывод

[latex]x[/latex] -кол-во квартетов.

Тесты

m n x
8 6 12
16 7 24
17 8 29.75
15 11 37

Код

 

Решение

Если [latex]m[/latex] и [latex]n[/latex] четные то на прямоугольнике [latex]mn[/latex] можно разместить [latex]\frac{mn}{4}[/latex] квартетов. Если [latex]m[/latex] четное, а [latex]n[/latex] нечетное (и наоборот), то можно разместить [latex]m(n-1)[/latex]. И наконец если [latex]m[/latex] и [latex]n[/latex] — нечетные, то нужно рассматривать два случая:

  1.  [latex]n = 4k + 1[/latex], в этом случае у нас формула такая: [latex]\frac{m(n-1)}{4}[/latex]
  2. Иначе, у нас другая формула: [latex]\frac{ \left(m(n-1)-2\right)}{4}[/latex]

Ссылка на решение в ideone.

e-olymp 63. Анфиса и цветы

Задача. Анфиса и цветы

Условие задачи

Мурзик одну из цветочных клумб сделал в виде шахматной доски размерами [latex]m[/latex] на [latex]n,[/latex] в каждой клеточке которой растет какой-то цветок. Иногда на эту клумбу он выводит на прогулку Анфису (да, не удивляйтесь, они действительно друзья). Анфиса, начиная всегда с верхнего левого угла передвигается по клумбе к правому нижнему и собирает цветы, причем таким образом, чтобы каждый раз проходить новым маршрутом, а Мурзик на выходе вручает ей кусочек сыра.
Посчитать, какое наибольшее количество кусочков сыра получит Анфиса, если она все время старается сохранить как можно больше цветов. При каждом очередном своем проходе Анфиса обязательно должна собрать как минимум один цветок.

Входные данные

В одной строке через пробел заданы два числа [latex]m[/latex] на [latex]n.[/latex]

Выходные данные

Вывести наибольшее количество кусочков сыра, которые может получить Анфиса.
Также условие задачи можно посмотреть здесь.

<р2>Реализация

Проверить код можно тут.

Тестирование

Входные данные (m, n) Выходные данные
1 2, 3 3
2 3, 3 5
3 3, 4 7
4 4, 3 7
6 5, 7 25

Алгоритм решения

Задана цветочная клумба в виде шахматной доски размерами [latex]m[/latex] на [latex]n[/latex]. Очевидно, что количество цветов на данной клумбе равно [latex]m\cdot n[/latex]. Пусть Анфиса, совершая свое очередное передвижение, начиная с левого верхнего угла клумбы и направляясь к правому нижнему, съедает [latex](m-1)\cdot (n-1)[/latex]  цветов, так как, согласно условию задачи, Анфиса обязательно должна собрать как минимум один цветок при каждом проходе. После каждого такого прохода на выходе она получает один кусочек сыра.

Следовательно, имеет место следующая формула: [latex]p=(m-1)\cdot (n-1)+1[/latex], где [latex]p[/latex] — наибольшее количество кусочков сыра, которое может получить Анфиса. Действительно, если [latex]m=2[/latex], [latex]n=3[/latex], то получаем [latex]p=3[/latex].

Mif 5

Постановка задачи

Даны действительные числа [latex]x, y, z[/latex]. Вывести наименьшее и наибольшее из них. Если наименьших или наибольших чисел окажется несколько, то укажите в скобках количество.

Входные данные: действительные числа [latex]x, y, z.[/latex]

Выходные данные: Максимальное значение (Highest value), количество максимальных значений (Count of highest values), минимальное значение (Lowest value), количество минимальных значений (Count of lowest values)

Тесты

Входные данные Выходные данные
 [latex]x, y, z[/latex] Максимум Количество максимумов Минимум Количество минимумов
1 10 20 1 10 2
2 10
3 20

Решение

Ссылка на решение задания на онлайн компиляторе Ideone.com

Описание решения

Для нахождения нахождения найбольшего max и найменьшего min значений используем цикл for. Если текущее число больше максимального, то ставим счетчик countMax на 1 и сохраняем новое максимальное значение max. Если последующее число равно текущему максимальному max, то увеличиваем счетчик countMax. Аналогично и для поиска найменьшего min значения.