Цифра 3

Условие задачи

На входе программы имеется натуральное число [latex] n (n < 99) [/latex]. Нужно вывести третью цифру (разряд сотен) числа [latex] n [/latex].

Входные данные

Натуральное число [latex] n (n < 99) [/latex].

Выходные данные:

Цифра разряда сотен числа [latex] n [/latex].

Тесты:

Ввод Вывод
1 512 5
2 7826 8
3 90285 2
4 12479056 0
5 18942793357 3

Код программы:

Решение:

Для нахождения третьей цифры с конца данного числа, выполним ряд следующих действий:

  • разделим данное натуральное число на [latex] 100 [/latex] и получаем количество сотен в числе: либо однозначное число (цифру), либо многозначное;
  • так как мы хотим получить простую сотню (однозначное число), мы находим остаток от полученного числа при делении на [latex] 10 [/latex].

Ссылки:

Задача на E-Olymp

Решение задачи на ideone

Засчитанное решение на E-Olymp

e-olymp 8283. Музыка

Задача

Малыши и малышки очень любили музыку, а Гусля был замечательный музыкант. У него были разные музыкальные инструменты, и он часто играл на них. Их было много, поэтому он развесил их на стенах своей комнаты. Инструмент, расположенный справа от входной двери имел номер $1$, дальше они нумеровались по кругу, а последний инструмент с номером $n$ висел слева от этой двери.

Малыши часто просили его научить играть на каком-нибудь инструменте. Гусля не отказывал, но сначала предлагал взять инструмент с первым номером, а если ученику хотелось играть на другом, то он выбирал шестой следующий по кругу и так далее. Напишите программу, которая определяла номер попытки, с которой ученик мог получить желаемый инструмент с номером $k$.

Например, если количество инструментов $n = 11$, то последовательность будет следующей: $(1) 2 3 4 5 6 (7) 8 9 10 11 1 (2) 3 4 5 6 7 (8) 9 10 11 1 2 (3) 4 5$ …, то есть при $k = 3$ инструмент с номером $3$ можно было бы получить с пятой попытки.

Входные данные

Два натуральных числа $n$ и $k$ $(1 \leqslant k \leqslant n \leqslant 100)$.

Выходные данные

Вывести номер попытки, в который «выпадал» инструмент с номером $k$. Если это никогда не происходило, следует вывести $0$.

Тесты

Входные данные Выходные данные
1 11 3 5
2 6 2 0
3 13 13 3
4 9 8 0
5 5 5 5

Код

Решение

Для решения задачи нам необходимо рассмотреть ряд натуральных чисел, начиная с единицы и прибавляя каждый раз $6$. С помощью операции деления с остатком мы можем реализовать алгоритм нахождения номера музыкального инструмента. Однако логика решения изменяется в зависимости от введенных пользователем данных. Имеется два случая:

  1. Если пользователь вводит разные числа.
  2. Если пользователь вводит одинаковые числа.

В первом случае мы рассматриваем две ситуации:
1) если пользователь вводит количество инструментов $6$, то единственным решением будет инструмент под номером $1$, так как Гусля выбирает инструменты через $6$ штук по кругу;
2) если количество инструментов не равно $6$ то мы реализовываем алгоритм нахождения номера путем деления с остатком, а именно: если текущее число при делении на количество инструментов не дает в остатке искомый номер, мы прибавляем $1$ к числу попыток, а число увеличиваем на $6$, в противном случае мы нашли число попыток.
Еще здесь, так же, как и во втором случае, есть подводный камень: если мы уже сделали какое-то количество попыток и текущее число при делении на количество инструментов дает в остатке $1$, мы никогда не попадем на нужный нам номер инструмента.

Во втором случае мы также рассматриваем две ситуации:
1) если количество инструментов делится нацело на $2$, то нам никогда не выпадет нужный инструмент;
2) если текущее число при делении на количество инструментов не дает в остатке $0$, мы прибавляем $1$ к числу попыток, а число увеличиваем на $6$, в противном случае ответ найден.
Также не забываем про подводный камень, указанный выше.

Ссылки

  • Условие задачи на e-olymp
  • Код программы на ideone.com
  • Засчитанное решение на e-olymp