e-olymp 2662. Метод минимума

Условие задачи

Массив сортируется методом выбора по возрастанию. Сколько раз меняет свое место первый по порядку элемент?

Входные данные

Первая строка содержит количество элементов в массиве $n$ $\left(1\leqslant n\leqslant1000\right)$. Во второй строке задан сам массив. Гарантируется, что все элементы массива различны и не превышают по модулю $10^9$.

Выходные данные

Вывести количество перемещений первого элемента.

Тесты

Ввод Вывод
1 3

1 3 2

0
2 2

2 1

1
3 4

4 1 5 3

3
4 6

23 5 56 2 87 3

1
5 7
15 1 6 3 9 8 13
4

Код программы

Решение

Применяем метод выбора по возрастанию. Для этого мы ищем наименьший элемент в массиве и перемещаем его на первое место. Затем ищем второй наименьший элемент и перемещаем его уже на второе место после первого наименьшего элемента. Этот процесс продолжается до тех пор, пока в массиве не закончатся неотсортированные элементы. Для того, чтобы найти количество перемещений первого элемента, мы проверяем совпадает ли значение первого элемента со значениями перемещаемых элементов. Также смотрим, чтобы значения этих  элементов не были равны между собой, так как в этом случае сам элемент никуда не сдвигается.

Подробное изложение алгоритма сортировки можно найти в  этой статье .

Ссылки

e-olymp 1327. Ладьи на шахматной доске

Задача

Ещё в детстве маленького Гарика заинтересовал вопрос: а сколькими способами на шахматной доске размером [latex]n \times n[/latex] можно расставить [latex] n [/latex] ладей так, чтобы они не били друг друга. Он очень долго решал эту задачку для каждого варианта, а когда решил — бросил шахматы.

А как быстро Вы управитесь с этой задачкой?

Входные данные

Размер шахматной доски — натуральное число, не превышающее [latex] 1000 [/latex].

Выходные данные

Выведите ответ, найденный Гариком.

Тесты

Входные данные Выходные данные
2 2
10 3628800
500 122013682599111006870123878542304692625357434280319284219241
358838584537315388199760549644750220328186301361647714820358
416337872207817720048078520515932928547790757193933060377296
085908627042917454788242491272634430567017327076946106280231
045264421887878946575477714986349436778103764427403382736539
747138647787849543848959553753799042324106127132698432774571
554630997720278101456108118837370953101635632443298702956389
662891165897476957208792692887128178007026517450776841071962
439039432253642260523494585012991857150124870696156814162535
905669342381300885624924689156412677565448188650659384795177
536089400574523894033579847636394490531306232374906644504882
466507594673586207463792518420045936969298102226397195259719
094521782333175693458150855233282076282002340262690789834245
171200620771464097945611612762914595123722991334016955236385
094288559201872743379517301458635757082835578015873543276888
868012039988238470215146760544540766353598417443048012893831
389688163948746965881750450692636533817505547812864000000000
000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000
999 402387260077093773543702433923003985719374864210714632543799
910429938512398629020592044208486969404800479988610197196058
631666872994808558901323829669944590997424504087073759918823
627727188732519779505950995276120874975462497043601418278094
646496291056393887437886487337119181045825783647849977012476
632889835955735432513185323958463075557409114262417474349347
553428646576611667797396668820291207379143853719588249808126
867838374559731746136085379534524221586593201928090878297308
431392844403281231558611036976801357304216168747609675871348
312025478589320767169132448426236131412508780208000261683151
027341827977704784635868170164365024153691398281264810213092
761244896359928705114964975419909342221566832572080821333186
116811553615836546984046708975602900950537616475847728421889
679646244945160765353408198901385442487984959953319101723355
556602139450399736280750137837615307127761926849034352625200
015888535147331611702103968175921510907788019393178114194545
257223865541461062892187960223838971476088506276862967146674
697562911234082439208160153780889893964518263243671616762179
168909779911903754031274622289988005195444414282012187361745
992642956581746628302955570299024324153181617210465832036786
906117260158783520751516284225540265170483304226143974286933
061690897968482590125458327168226458066526769958652682272807
075781391858178889652208164348344825993266043367660176999612
831860788386150279465955131156552036093988180612138558600301
435694527224206344631797460594682573103790084024432438465657
245014402821885252470935190620929023136493273497565513958720
559654228749774011413346962715422845862377387538230483865688
976461927383814900140767310446640259899490222221765904339901
886018566526485061799702356193897017860040811889729918311021
171229845901641921068884387121855646124960798722908519296819
372388642614839657382291123125024186649353143970137428531926
649875337218940694281434118520158014123344828015051399694290
153483077644569099073152433278288269864602789864321139083506
217095002597389863554277196742822248757586765752344220207573
630569498825087968928162753848863396909959826280956121450994
871701244516461260379029309120889086942028510640182154399457
156805941872748998094254742173582401063677404595741785160829
230135358081840096996372524230560855903700624271243416909004
153690105933983835777939410970027753472000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000

Программный код

Алгоритм решения

Алгоритм решения данной задачи заключается в том, что нужно вычислить [latex]n! = 1\times 2\times 3\times \cdots\times n [/latex] , используя длинную арифметику ( умножение длинного числа на короткое ).
Иллюстрация для восьми ладей:

Детали реализации

  • Для реализации алгоритма я использовала класс java.math.BigInteger, подробнее о нем можно почитать здесь.
  • Также для ввода данных я использовала класс java.util.Scanner, подробнее о нем можно почитать тут и вот тут.

Ссылки :
Задача на e-olymp
Код на ideone
Засчитанное решение

e-olymp 9414. Убить всех термитов

Условие задачи

На дереве живут термиты. Ваша задача убить их всех. Дерево является неориентированным связным графом с $n$ вершинами и $n — 1$ ребрами. Чтобы убить термитов, Вам следует отравить некоторые вершины. Если термит попадает на вершину с ядом, то он немедленно умирает. Вы не знаете, где изначально находятся термиты. Но Вы знаете, что термиты каждый раз попадают в случайную соседнюю вершину. Однако если термит прошел ребро $(u, v)$, то следующее ребро должно отличаться от $(v, u)$ за исключением случая, когда термит попадает в лист (в этом случае термит поворачивается и возвращается назад). Вам следует отравить минимальное количество вершин так, чтобы термиты попали в отравленные вершины после конечного числа шагов.

Входные данные

Первая строка содержит одно целое число $n$ $(1 \leqslant n \leqslant 100000)$. Следующая строка содержит $n — 1$ целое число  $p_{i} (2 \leqslant i \leqslant n)$, означающее что ребро соединяет $p_{i}$ и $i$.

Выходные данные

Выведите минимальное количество отравленных вершин.

Тесты

Входные данные Выходные данные
1 1 1
2 2
1
1
3 8
1 1 2 1 2 3 2
2
4 5
1 2 1 4
1
5 16
1 2 3 4 5 3 7 1 9 9 11 11 13 13 15
3
6 10
1 2 3 3 1 2 3 7 9
2
7 8
1 1 3 3 1 6 6
2

Код

Решение задачи

Поскольку в задаче речь идет о дереве, циклов в нем нет по определению. Значит, единственным способом для термита ходить «вечно» будет путь между двумя листами, в которых он сможет разворачиваться. Фактически, задача сводится к вопросу «Какое минимальное количество вершин в дереве нужно отравить, чтобы нельзя было добраться из любого листа в другой лист не пройдя через отравленные?».

Определим для этого $3$ типа вершин: лист, развилка и обычная вершина. Листом назовем вершину, у которой нет детей (всего $1$ связь с другой вершиной). Обычные вершины — те, у которых ровно $2$ связи (для нашего термита это пути вниз или вверх). Развилкой назовем вершину, у которой $3$ или больше связей с другими. Будем считать корень тоже развилкой, даже если у него всего $2$ связи, или листом, если одна. Через развилки можно ходить из одного листа в другой, либо «вверх» — в сторону корня.

Типы вершин

$1$ — корень; $5,6,3$ — листья; $4$ — развилка; $2$ — обычная;

Первый этап

Очевидно, выгоднее всего «закрывать» развилки. А среди них — те, которые соединяют несколько листов напрямую. Пусть каждый лист отправляет «запрос» вверх по дереву на закрытие ближайшей к нему развилки. Когда «запрос» доходит до развилки, он тут же записывается на её счёт. Таким образом, в дереве выше вершина $4$ будет иметь $2$ запроса — от листов $5$ и $6$, а корень — $1$ запрос от листа $3$.

Теперь, просто считаем количество вершин с количеством запросов $\geqslant2$ и «закрываем» их.

Второй этап

Увы, первый этап не идеален и может «не донести» запросы в нужное место, т.к. некоторые развилки (а именно — соединяющие лист и другую развилку) могут остаться с одним запросом и не быть закрытыми. Если таких много, термит все еще может ходить между листами. Например, в таком дереве:

Дерево 2

Дерево, в котором необходим второй этап

Вершина $2$ и корень получают по $1$ запросу и остаются открытыми, а у термита остается путь между листами $10$ и $6$.

Для предотвращения таких случаев, пробежимся по дереву «снизу вверх» — от самого нижнего уровня до верхнего и для каждой развилки, у которой ровно $1$ запрос, сместим его вверх аналогично первому этапу — до ближайшей развилки. Будем выполнять этот шаг, пока есть такие вершины (с $1$ запросом).

В итоге, все запросы «соединятся» в нужных развилках, значение в них станет $\geqslant2$ и эти развилки нужно будет тоже закрыть. Для дерева выше, будет закрыт корень.

Осталось посчитать кол-во закрытых.

Описание алгоритма

Дерево будем хранить в ArrayList<ArrayList<Integer>> tree . Количество запросов для вершины $i$ хранится в killed.get(i). Стандартный ArrayList used для поиска в ширину и dist- ArrayList расстояний от корня до вершин, которые и будут определяться с помощью BFS.

Функция kills предназначена для того, чтобы донести запрос от листа до развилки. Она рассматривает $3$ случая:

  1.   v == p — текущая вершина совпадает с той, из которой пришли. Это крайний случай, говорящий о том, что мы только начали и находимся в листе. Тогда, идем в единственно возможном направлении — tree.get(v).get(0).
  2. tree.get(v).size() == 2 — вершина обычного типа, просто идем «вверх», выбирая из двух путей тот, что не совпадает с предыдущей вершиной.
  3. tree.get(v).size() >= 3 — попали в развилку. Увеличиваем ее значение killed.get(v) и выходим из рекурсии.

Функция goup отличается от kills лишь тем, что при v == p выбирает из всех направлений то, которое ближе к корню, используя dist.

Подготовка

Можно заметить, что для всех деревьев из $5$ или менее вершин ответ будет $1$. Проверим это сразу при вводе n. Далее, осторожно считываем дерево в tree (см. Входные данные). В следующем цикле, определяем листья и запоминаем их в ArrayList leaves. Нужно учесть то, что корень может быть листом, если у него всего $2$ связи — одна с деревом, а другая — искусственно созданная нами в $0$ вершину.  Последний шаг — запустить поиск в ширину из корня, который заполнит ArrayList dist расстояниями от корня до вершин.

Первый этап

Просто запускаем kills (l, l) из каждого листа l для «отправки» запросов в ближайшие развилки.

Второй этап

Определяем максимальную «глубину» дерева — максимальное расстояние вершины от корня. Далее, для каждого уровня от самого нижнего до корня, при определении вершины со значением killed.get(i) == 1 запускаем goup (i, i), а в переменной wentup считаем количество таких случаев. Как только их не останется — while выйдет из цикла.

Наконец, осталось просто посчитать количество вершин, у которых значение killed.get(i) >= 2.
Задача на e-olymp
Код решения на ideone
Засчитанное решение на e-olymp

e-olymp 1142. Деление на ноль или…

Задача

Как известно, делить на ноль нельзя. А может еще на что-то делить нельзя? Это Вам и предстоит выяснить.

Входные данные

В единственной строке задано два целых знаковых 32-битовых числа $a$ и $b$.

Выходные данные

Выведите значение частного, полученного в результате деления $a$ на $b$. Если деление произвести невозможно, вывести ERROR.

Тесты

Входные данные Выходные данные
1 8 4 2
2 6 0 ERROR
3 0 4 0
4 613 18 34
5 9197 10000 0

Код

Решение

В задаче, единственной невозможной операцией является деление на ноль. Это условие можно проверить с помощью условных операторов if и else. Также, так как $a$ и $b$ являются целыми 32-битными числами, необходимо использовать тип переменных long.

Ссылки

Условие задачи на e-olymp
Код программы на ideone.com
Засчитанное решение на e-olymp

e-olymp 1704. Умная черепашка

Условие задачи

Имеется клетчатое поле размером $m\times n$. В левом нижнем углу сидит черепашка. Она умеет ходить только вправо или вверх. Перед тем как добраться до правого верхнего угла её заинтересовал вопрос: сколько существует способов добраться из исходной точки до правого верхнего угла?

Черепашка хотя и умная, но сама считать так много пока не умеет. Помогите черепашке найти ответ на свой вопрос.

Входные данные

Два натуральных числа $m$ и $n$, не превышающие 30.

Выходные данные

Вывести количество способов, которыми черепашка сможет добраться из левого нижнего угла в правый верхний.

Тесты

Ввод Вывод
1 4 5 10
2 3 14 105
3 11 17 5311735
4 20 21 68923264410
5 30 30 30067266499541040

Код программы (циклы)

Решение

Для нахождения количества способов, которыми черепашка сможет добраться из левого нижнего угла в правый верхний, мы воспользуемся формулой из комбинаторики: $\frac{\left(n+m-2\right)!}{(n-1)!\times(m-1)!}$.  Для того, чтобы избежать больших чисел,  делим на наибольший множитель знаменателя (пусть это будет $\left(n-1\right)!$ ). Получаем: $ \frac{n\times(n+1)\times…\times(n+m-2)}{1\times2\times…\times(m-1)}$. Домножаем числитель, пока он не делится на очередной сомножитель знаменателя. Если делится, то делим и переходим к следующему сомножителю знаменателя.

Ссылки (циклы)

Код программы (динамическое программирование)

Решение

Заполним треугольную матрицу ответами для всех возможных значений $m$ и $n$ . Логика заполнения такая — если поле выглядит как полоска клеток, черепахе идти можно будет только вправо. Значит в первой строке (как и в столбце) будут все элементы равные 1. Поскольку в каждой клетке есть два варианта движения (вправо или вверх), остальные элементы будут заполняться как сумма ранее найденных значений для клеток справа текущей и над ней. Для диагональных элементов оба соседних расположены симметрично (то есть они равны), поэтому диагональный элемент будет равен удвоенному соседу справа. Решение намного быстрее, если нужно пройти много тестов, но тратит память на запоминание всех ответов.

Ссылки (динамическое программирование)

e-olymp 8254. Номера отеля

Задача

Отель имеет $n$ этажей. Лобби, ресторан и тренажерный зал расположены на первом этаже. Номера находятся со 2-го по $n$-ый этажи. На каждом этаже расположено $m$ стандартных номеров. Если каждый стандартный номер вмещает 3 гостя, какое наибольшее количество гостей может поместиться во всех стандартных номерах отеля?

Входные данные

Два натуральных числа $n$ и $m$ ($n, m\leqslant10^6$).

Выходные данные

Вывести наибольшее количество гостей, которое может поместиться во всех стандартных номерах отеля.

Тесты

Входные данные Выходные данные
1 5 10 120
2 3 1 6
3 2 5 15
4 7 2 36
5 20001 450000 270000000000

Код

Решение

Для решения данной задачи выводим формулу $(n-1) \cdot m \cdot 3$, первый из сомножителей — количество этажей, на которых располагаются номера, второй — количество номеров на каждом из указанных этажей, третий — максимальное количество гостей в каждом номере. Заметим, что по условию на первом этаже номера отсутствуют, поэтому первый сомножитель в формуле будет на единицу меньше, чем количество этажей в отеле.

Ссылки

Задача на сайте e-olymp
Код решения на ideone

e-olymp 4020. Культ-орки на лестнице

Задача

В Летней Кинематографической Школе пришло время обеда и эльф Коля поспешил в столовую. Однако для того, чтобы попасть в столовую, Коле нужно подняться по длинной лестнице, а на каждой её ступеньке в это время суток стоит по культ-орку. Каждый культ-орк разрешает Коле пройти по своей ступеньке только после того, как Коля запишется на мероприятие, которое этот культ-орк организует. При этом никакие два культ-орка не проводят одно и то же мероприятие, и все мероприятия проходят в разное время.

Коля — честный эльф, и если уж он запишется на какую игру или конкурс, то потом обязательно придёт поучаствовать. Однако Коля хочет потратить как можно меньше времени на развлечения, ведь иначе ему некогда будет дорешивать кинематографические задачки. К счастью, Коле не надо наступать на каждую ступеньку, он может перепрыгнуть через несколько. Коля хочет узнать, какое минимальное количество времени ему придётся распланировать за один проход по лестнице до столовой.

Входные данные:

В первой строке вводятся два числа $n$ и $k$ $(1 \leqslant n \leqslant 10000, 0 \leqslant k \leqslant 20)$, $n$ — количество ступенек на лестнице, $k$ — максимальное количество ступенек, через которые Коля может перепрыгнуть за один прыжок (то есть, например, на первом шаге Коля может прыгнуть на $(k + 1)$-ую или более низкие ступеньки). Во второй строке вводятся $n$ чисел: $i$-ое число указывает на длительность в минутах того мероприятия, которое проведёт культ-орк, стоящий на $i$-ой ступеньке. Каждое мероприятие не может длиться более $24$ часов. Ступеньки нумеруются снизу вверх, ступенькой номер $n$ считается весь этаж столовой.

Выходные данные:

Выведите одно число — минимальное количество минут, которое Коле придётся распланировать.

Тесты

Входные данные  Выходные данные
1 5 2
7 3 9 2 11
14
2 6 1
59 32 4 21 5 1
42
3 10 3
40 55 85 29 158 105 115 281 320 10
144
4 15 4
67 20 85 12 345 9 234 115 190 47 5 17 23 89 130
156
5 4 0
100 20 31 49
200

Код программы

Решение

Для каждой ступеньки будем считать минимальное время, которое она отнимет у эльфа, учитывая сколько ступенек можно пропустить (от $0$ до $k + 1$). То есть будем прыгать со ступенек пониже (если это возможно) и сравнивать значения на каждой. Под значением подразумевается сумма уже найденного значения на более низкой ступеньке и времени, которое отнимет мероприятие $i$-ой ступеньки. Таким образом мы узнаем, какие ступеньки выгодно перепрыгнуть. $0$-я ступенька займет $0$ минут, так как эльф не потратит время. Изначально за минимум на ступеньках до $k + 1$ включительно можно взять время мероприятия соответствующей ступеньки, для остальных — сумму значения предыдущей ступеньки и времени мероприятия данной ступеньки. В случае, если эти значения не минимальные, они заменятся на подходящие.
Ответом будет значение на последней ступеньке, так как к ней будет проложен путь, который «займет» минимум времени эльфа на развлечения.

Ссылки

Условие задачи на e-olymp
Код программы на ideone

e-olymp 806. Платформы — 3

Задача

В старых играх можно столкнуться с такой ситуацией. Герой прыгает по платформам, висящим в воздухе. Он должен перебраться от одного края экрана до другого. При прыжке с платформы на соседнюю, у героя уходит $|y_{2} — y_{1}|^2$ энергии, где $y_{1}$ и $y_{2}$ — высоты, на которых расположены эти платформы. Кроме того, есть суперприём, позволяющий перескочить через платформу, но на это затрачивается $3|y_{3} -y_{1}|^2$ энергии.

Известны высоты платформ в порядке от левого края до правого. Найдите минимальное количество энергии, достаточное, чтобы добраться с $1$-й платформы до $n$-й (последней).

Входные данные

Первая строка содержит количество платформ $n$ $(2 \leqslant n \leqslant 10^5)$, вторая — $n$ целых чисел, значения которых не превышают по модулю $4000$ — высоты платформ.

Выходные данные

Выведите единственное целое число — искомую величину энергии.

Тесты

Входные данные  Выходные данные
1 4
1 2 3 30
731
2 4
0 1 6 8
40
3 8
1 15 16 23 42 10 84 5
828
4 7
57 54 -55 -34 21 88 -100
55189
5 7
-4000 4000 -4000 4000 -4000 4000 -4000
0

Код программы

Решение

Чтобы решить задачу, мы создадим массив $energy$, где будем хранить минимальную энергию, которую герой потратит для прыжка на очередную $i$-ю платформу. Для этого необходимо для каждой платформы, начиная со второй, рассмотреть три вида прыжка:

  • прыжок с предыдущей $i — 1$ платформы.
  • суперприём, то есть прыжок c $i — 2$ платформы.
  • 3-й вид: суперприём с $i — 1$ платформы на $i + 1$ и прыжок назад на $i$.

«Цены» за обычный прыжок и суперприём мы можем найти из формул данных в условии, с 3-м же сложнее — результатом будет сумма «цены» суперприёма $3(y_{i+1} — y_{i-1})^2$ и «цены» прыжка назад $(y_{i} — y_{i+1})^2$.

Для понимания схемы можно рассмотреть в качестве примера второй тест.
Синим обозначен 3-ий тип. Красными цифрами — весь путь.

второй тест

Каждый из 3-х путей даст своё значение энергии, равное сумме «цены» прыжка на $i$-ю платформу и значения в той, из которой герой совершил прыжок. Наименьшей энергией для этой платформы будет минимум из этих трех значений.
На второй платформе $(i = 1)$ в случае суперприёма мы выходим за границы массива и получаем независимое значение, поэтому эффективнее будет в качестве «цены» выбирать максимум из двух других уже найденных значений. Аналогично на последней  $(i = n — 1)$ и 3-м типе прыжка, максимум будет невыгодным и соответственно не будет выбран как минимум в $energy_{i}$.

Ссылки

Условие задачи на e-olymp
Код программы на ideone

e-olimp 7848. Переставить соседние

Задача

Задан массив из $n$ целых чисел. Переставьте соседние элементы массива ($a_{0}$ с $a_{1}$, $a_{2}$ с $a_{3}$ и так далее). Если элементов нечетное количество, то последний элемент следует оставить на своем месте.

Входные данные

В первой строке записано число $n$. В следующей строке записано $n$ целых чисел. Все числа по модулю не превышают $100$.

Выходные данные

Вывести обновленный массив.

Тесты

Входные данные Выходные данные
7
3 5 -7 7 5 -9 -4
5 3 7 -7 -9 5 -4
8
-9 81 27 -38 2 6 -56 -21
81 -9 -38 27 6 2 -21 -56
2
25 -76
-76 25
3
55 44 33
44 55 33
1
99
99

Код

Решение

Будем переставлять соседние элементы массива следующим образом: arr[1] с arr[0], arr[3] с arr[2] и так далее до конца массива (т.е. каждый нечетный по счету элемент меняем местами с предыдущим). При этом совершенно неважно, четное кол-во элементов или нечетное.

Ссылки

Условие задачи на E-Olymp
Код задачи на Ideone

e-olimp 8234. Сходинки

Задача

Скількома способами можна потрапити на $n$-ту сходинку, якщо можна ступати на наступну, переступати через одну і через дві сходинки.

Вхідні дані

Одне число $n$ — номер сходинки $(n \leqslant 60)$.

Вихідні дані

Вивести кількість способів, якими можна потрапити на $n$-ту сходинку.

Тести

Вхідні дані Вихідні дані
0 1
5 13
15 5768
32 181997601
60 4680045560037375

Код № 1

Рішення

Розіб’ємо задачу на декілька простих. Спочатку розрахуємо кількість способів для однієї сходинки (1 спосіб), потім для двох (2 способи: 0 $\rightarrow$ 1 $\rightarrow$ 2; 0 $\rightarrow$ 2) і також потрібно врахувати випадок, коли кількість сходинок дорівнює нулю (1 спосіб). Далі легко помітити, що кожне наступне значення дорівнює сумі трьох попередніх звідки і отримуємо формулу:
arr[i] = arr[i-1] + arr[i-2] + arr[i-3]
Також цю задачу можна вирішити за допомогою рекурсії. Я використала рекурсію з запам’ятовуванням для того, щоб уникнути переповнення стеку викликів (загальна ідея така: при кожному виклику функції перевіряємо, чи маємо ми вже це значення, і якщо ні, рахуємо його. Таким чином ми будемо використовувати кожне значення лише один раз).

Код № 2

Посилання

Умова задачі на E-Olymp
Код задачі № 1 на Ideone
Код задачі № 2 на Ideone