ML13. Площадь равностороннего треугольника

Постановка задачи

Дана сторона равностороннего треугольника. Найти площадь этого треугольника.

Входные данные:

Сторона равностороннего треугольника [latex]a[/latex]

Выходные данные:

Площадь равностороннего треугольника [latex]S[/latex]

Тесты

Входные данные Выходные данные
1 4 6.928
2 3 3.897
3 6 15.588

Ссылка на результат теста на wolframalpha.com

Решение

Для проверки работы программы можно воспользоваться онлайн компилятором Ideone.com

Описание решения

Для нахождения площади равностороннего треугольника будем использовать формулу [latex]S = \frac{a^2\sqrt{3}}{4}[/latex]. Чтобы найти корень, используем функцию Math.sqrt(). На экран выводим площадь треугольника.

А136в

Задача

Даны натуральное число [latex]n[/latex], действительные числа [latex]a_1,\ldots, a_n[/latex]. Вычислить: [latex]|a_1|+\ldots+|a_n|[/latex].

Тесты

     n [latex]a_1,\ldots, a_n[/latex] Результат
 1      3   3.31  -2.11   8.21     13.63
 2      6  -12.1  -2.56  9  5  -2  4     34.66
 3      2    -3.65  -3.11      6.76

Решение

Проверить работу кода можно в облаке по ссылке — Ideone.

Пояснения

С начала вводим количество элементов  [latex]n[/latex], после чего, в цикле по  i  от 1 до [latex]n[/latex] вводим элементы и суммируем их значение по модулю в переменную  sum , по выходу из цикла выводим сумму в консоль.

e-olymp 6122. Простой стек

Задача

Формулировка задания на e-olymp.

Реализуйте структуру данных «стек». Напишите программу, содержащую описание стека и моделирующую работу стека, реализовав все указанные здесь методы. Программа считывает последовательность команд и в зависимости от команды выполняет ту или иную операцию. После выполнения каждой команды программа должна вывести одну строчку. Возможные команды для программы:

  • push n — Добавить в стек число n (значение n задается после команды). Вывести ok.
  • pop — Удалить из стека последний элемент. Программа должна вывести его значение.
  • back — Вывести значение последнего элемента, не удаляя его из стека.
  • size — Вывести количество элементов в стеке.
  • clear — Очистить стек и вывести ok.
  • exit — Вывести bye и завершить работу.

Гарантируется, что набор входных команд удовлетворяет следующим требованиям: максимальное количество элементов в стеке в любой момент не превосходит 100, все команды pop и back корректны, то есть при их исполнении в стеке содержится хотя бы один элемент.

Входные данные

Каждая строка содержит одну команду.

Выходные данные

Для каждой команды вывести в отдельной строке соответствующий результат.

Тесты

 Входные данные  Выходные данные
            push 2                             push 3                             push 5                              back                                 size                                   pop                                 size                                  push 7                             pop                                clear                                 size                                   exit                     ok                                       ok                                       ok                                        5                                        3                                        5                                        2                                       ok                                        7                                       ok                                        0                                      bye

Отмечу так же, что программа успешно прошла все тесты на сайте e-olymp со следующими результатами.

Решение

Проверить работу кода можно в облаке по ссылке — Ideone.

Пояснения

Структура класса Stack из себя представляет следующее:

  • Динамический массив   storage  типа  Vector<Integer> , который, по сути, и является хранилищем элементов стека;
  • Конструктор, в котором происходит инициализация вектора  storage ;
  • Метод  push(int number)  типа void , который принимает как параметр число, и заносит это число в стек;
  • Метод  pop()  типа  int , который возвращает значение верхнего элемента стека и извлекает его;
  • Метод  back()  типа  int , который возвращает значение верхнего элемента стека, без его извлечения;
  • Метод  size() , который возвращает количество элементов, находящихся в стеке;
  • Метод  clear() , который очищает стек;
  • Метод exit()  типа String , который возвращает строку «bye».

Ю 4.9

Задача

В матрице [latex]A(n, m) [/latex] все ненулевые элементы заменить обратными по величине и противоположными по знаку.

Тесты

      n        m  Входная матрица              Выходная матрица
     1                     3                         3           6   -2    -1                     0    0     4                    11   2    -3         -0.167     0.500      1.000                  0.000     0.000     -0.250                 -0.091    -0.500      0.333
     2                     3                         4       -3    -9    15   12        -31   -8     2     8           -1     2    -6    -8      0.333   0.111    -0.067   -0.083      0.032   0.125    -0.500   -0.125      1.000  -0.500     0.167    0.125
     3                    4                         3             1   1   1                       1   1   1                       1   1   1                       1   1   1            -1.000  -1.000   -1.000                    -1.000  -1.000   -1.000                    -1.000  -1.000   -1.000                    -1.000  -1.000   -1.000

Решение

Проверить работу кода можно в облаке по ссылке — Ideone.

Пояснения

Объявляем и инициализируем переменные n  и m , которые являются размерами нашей матрицы [latex]A[/latex]. Объявляем нашу матрицу и создаем экземпляр с размерами [latex]n[/latex] x [latex]m[/latex]. Далее создаем цикл по i  от 0 до [latex]n-1[/latex] в котором создаем вложенный цикл по  j  от 0 до [latex]m-1[/latex], и в нем поэлементно вводим значения матрицы. В следующем цикле снова создаем вложенный, в котором мы проходим по каждому элементу матрицы и проверяем не равен ли он нулю  if(A[i][j] != 0) . Если условие выполняется, то мы заменяем элемент на обратный и меняем знак. В последнем цикле выводим полученную матрицу, элементы которой будут выводится с точностью до трех символов после запятой.

e-olymp 7336. Пирожки

Постановка задачи

Пирожок в столовой стоит [latex]a[/latex] гривен и [latex]b[/latex] копеек. Найдите, сколько гривен и копеек заплатил Петя за [latex]n[/latex] пирожков.

Входные данные:

Три натуральных числа [latex] a, b, n[/latex] [latex](0\leq a, b, n \leq100)[/latex]

Выходные данные:

Через пропуск два числа: стоимость покупки в гривнах и копейках.

Тесты

Входные данные Выходные данные
1 5      9     2 10     18
2 0     15     18 2     70
3 5     25     0 0     0

Решение

Описание решения

Для объявления переменных a,b,n и total используем тип int, так как эти числа являются натуральными. Для простоты подсчета переводим сумму в копейки; так как в одной гривне 100 копеек, количество гривен мы умножаем на 100, прибавляем количество копеек, а затем умножаем получившуюся сумму в копейках на количество пирожков. Отсюда формула: total = (a*100 + b)*n.

В результате получаем число, в котором две последние цифры — это количество копеек, а остальные — количество гривен. Выводим их на экран с помощью соответствующих операций деления total/100 для гривен и деления по модулю total%100 для копеек.

Посмотреть решение задания можно на сайте e-olymp.

Посмотреть, как работает программа со входными данными 5, 9, 2 можно на сайте ideone.

А320. Вложенный цикл

Задача

Вычислить [latex] \sum\limits_{k = 1}^n (k^3 \sum\limits_{l = 1}^m (k-l)^2) [/latex] при произвольных целых [latex]n[/latex] и [latex]m[/latex].

Тесты

Тесты были подготовлены и проверены с помощью ресурса WolframAlpha.

 №      n      m      Результат
  1      3      2            144
  2      2      9           1332
  3      4      4           1120

Решение

Проверить работу кода можно в облаке по ссылке — Ideone.

Пояснения

Объявляем и инициализируем переменные n  и  m из потока ввода. Объявляем переменные для сумм:  m_sum для вложенного цикла по [latex]l[/latex] и  n_sum для цикла по [latex]k[/latex]. Далее создаем цикл по [latex]k[/latex] от 1 до [latex]n[/latex], в котором мы создаем вложенный цикл по [latex]l[/latex] от 1 до [latex]m[/latex], в котором вычисляем [latex]\sum\limits_{l=1}^m (k-l)^2[/latex] в переменную m_sum , по выходу из данного цикла добавляем произведение [latex] k^3 * \sum\limits_{l = 1}^m (k-l)^2 [/latex] в переменную  n_sum , после чего обнуляем переменную  m_sum . По выходу из цикла выводим финальную сумму в консоль.

А116г

Задача

Даны натуральное число [latex]n[/latex] и действительное число [latex]x[/latex]. Вычислить [latex]\prod\limits_{k = 1}^n (1+\frac{\sin(kx)}{k!})[/latex].

Тесты

 №      n       x         Произведение
  1      4    3.22                0.9673
  2     11   214.3                2.8177
  3      1      14                1.9906
  4      7    0.76                2.8456

Решение

Проверить работу кода можно в облаке по ссылке — Ideone.

Пояснения

Для вычисления данного в условии произведения кроме действительного  x  и натурального  n  введем такие переменные:  mult  — переменная произведения для вычисления в цикле,  fact  — переменная факториала [latex]k[/latex].

Инициализируем переменные  n  и  x значениями из потока ввода, после чего создаем цикл по [latex]k[/latex] от 1 до [latex]n[/latex], в котором будет вычисляться факториал и, собственно, само произведение. При вычислении произведения используем функцию sin()  стандартной библиотеки Math. По завершению цикла, выводим произведение с точностью до четырёх символов после запятой.

ML2

Задача

Даны действительные числа [latex]x[/latex] и [latex]y[/latex]. Получить [latex]\frac{|x|-|y|}{|x|+|y|}[/latex].

Тесты

Входные данные Выходные данные
 1            3        7                 -0.4
 2           -5      -2              0.4285
 3           -6       4                  0.2
 4            2       -3                 -0.2

Решение

Проверить работу кода можно в облаке по ссылке — http://ideone.com/h12CNL

Пояснения 

Используя тип double объявляем переменные x, y и  solution. После, инициализируем переменные  x и  y значениями из потока ввода. Далее, находим решение нашего выражения при использовании метода  abs() библиотеки Math. Решение присваиваем ранее объявленной переменной solution, после чего выводим его в консоль.

Частотный словарь

Задача: Получив на входе корпус языка (огромный набор атрибутированных текстов на каком-нибудь языке) построить частотный словарь. Знаки препинания, скобки, кавычки и числа должны быть удалены. Слова, содержащие в себе не буквенные символы, игнорируются целиком.

Реализация: Код на ideone