e-olimp 7848. Переставить соседние

Задача

Задан массив из $n$ целых чисел. Переставьте соседние элементы массива ($a_{0}$ с $a_{1}$, $a_{2}$ с $a_{3}$ и так далее). Если элементов нечетное количество, то последний элемент следует оставить на своем месте.

Входные данные

В первой строке записано число $n$. В следующей строке записано $n$ целых чисел. Все числа по модулю не превышают $100$.

Выходные данные

Вывести обновленный массив.

Тесты

Входные данные Выходные данные
7
3 5 -7 7 5 -9 -4
5 3 7 -7 -9 5 -4
8
-9 81 27 -38 2 6 -56 -21
81 -9 -38 27 6 2 -21 -56
2
25 -76
-76 25
3
55 44 33
44 55 33
1
99
99

Код

Решение

Будем переставлять соседние элементы массива следующим образом: arr[1] с arr[0], arr[3] с arr[2] и так далее до конца массива (т.е. каждый нечетный по счету элемент меняем местами с предыдущим). При этом совершенно неважно, четное кол-во элементов или нечетное.

Ссылки

Условие задачи на E-Olymp
Код задачи на Ideone

e-olimp 9536. Сумма матриц

Задача

Заданы две матрицы $A$ и $B$. Найдите их сумму $C$ = $A$ + $B$.

Входные данные

Первая строка содержит размеры матриц $n$ и $m$ $(1 \leqslant n, m \leqslant 100)$. Следующие $n$ строк содержат по $m$ целых чисел и описывают матрицу $A$. Далее следует пустая строка, после чего в таком же формате задается матрица $B$.

Выходные данные

Выведите матрицу $С$: $n$ строк по $m$ целых чисел.

Тесты

Входные данные Выходные данные
1 1
2

3

5
1 5
4 3 7 2 1

3 2 2 1 6

7 5 9 3 7
2 2
0 4
2 3

5 4
1 6

5 8
3 9
3 4
3 4 5 6
1 2 3 4
7 6 5 4

0 0 -3 -2
-1 3 4 5
5 6 1 2

3 4 2 4
0 5 7 9
12 12 6 6
3 3
2 -128 47
-365 5 56
243 42 12

678 43 76
4 345 -23
97 -453 18

680 -85 123
-361 350 33
340 -411 30

Код

Решение

Чтобы найти сумму двух матриц, необходимо сложить их соответствующие элементы.

Ссылки

Условие задачи на E-Olymp
Код задачи на Ideone

e-olimp 1658. Факториал

Задача

Вычислите факториал числа.

Входные данные

Одно целое число [latex]n[/latex] ([latex] 0 \leqslant n \leqslant 20[/latex]).

Выходные данные

Выведите значение [latex]n! = 1 · 2 · 3 · … · n.[/latex]

Тесты

Входные данные Выходные данные
3 6
0 1
20 2432902008176640000

Код № 1

Решение № 1

Факториал натурального числа [latex]n[/latex] определяется как произведение всех натуральных чисел от [latex]1[/latex] до [latex]n[/latex] включительно.

Код № 2

Решение № 2

Также факториал числа можно найти при помощи рекурсивной функции (функции, которая вызывает сама себя).

Ссылки

Условие задачи на E-Olymp
Код задачи № 1 на Ideone
Код задачи № 2 на Ideone

e-olymp 8680. Чётные соседи

Условие задачи

Задана последовательность целых чисел. Подсчитать количество элементов, у которых чётные соседи.

Входные данные

В первой строке задано количество элементов последовательности $n$ $(n \leqslant 100)$. Во второй строке заданы сами элементы, значение каждого из которых по модулю не превышает $100$.

Выходные данные

Вывести в одной строке количество элементов последовательности с чётными соседями.

Тесты

Входные данные Выходные данные
1 6
1 2 3 4 5 6
2
2 9
3 6 3 5 2 9 1 2 5
0
3 3
2 1 2
1
4 6
13 24 54 66 44 77
2
5 4
100 224 666 222
2

Программный код

Решение

Идея решения задачи состоит в том, чтобы создать три переменные: $prev$ (предыдущий), $pres$ (настоящий, текущий) и $fut$ (будущий). Затем в цикле мы перезаписываем эти переменные т.е.: настоящий становится прошлым, будущий настоящим, а новый будущий мы читаем из cin. Так же, в ходе решения задачи обнаружилась проблема с чтением количества элементов. Допустим, если мы записали, что $n=6$, а дальше ввели $10$ элементов, то количество элементов с чётными соседями будет считаться для $10$ элементов. Чтобы избежать этого мы ограничиваем количество читаемых элементов с помощью счётчика i++ и цикла while.

Ссылки

e-olymp 4439. Возведение в степень

Задача

Вычислить значение $a^b$.

Входные данные

Два натуральных числа $a$ и $b$.

Выходные данные

Выведите значение $a^b$, если известно что оно не превосходит $10^{18}$.

Тесты

ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
 1 1 100 1
 2 2 10 1024
 3 3 7 2187
 4 8 9 134217728
 5 10 10 10000000000
 6 100 9 1000000000000000000

Код

Решение

Для решения задачи создадим функцию «pow()», заметим, что для любого числа $a$ и чётного числа $b$ выполнимо очевидное тождество (следующее из ассоциативности операции умножения):
$$a^b = \left(a^2\right)^{\frac{b}{2}}= \left(a\cdot a\right)^{\frac{b}{2}}$$
Оно и является основным в методе бинарного возведения в степень. Действительно, для чётного $b$ мы показали, как, потратив всего одну операцию умножения, можно свести задачу к вдвое меньшей степени.
Осталось понять, что делать, если степень b нечётна. Здесь мы поступаем очень просто: перейдём к степени b-1, которая будет уже чётной:
$$a^b = a^{b-1} \cdot a$$
Итак, мы фактически нашли рекуррентную формулу: от степени $b$ мы переходим, если она чётна, к $\frac{b}{2}$, а иначе — к $b-1$.

Примечание

Задача требует использование быстрого алгоритма, так как прямое умножение $b$ раз для возведение в $b$-ю слишком медленно, из-за большого количества перемножений. Алгоритм быстрого возведения в степень — это предназначенный для возведения числа в натуральную степень за меньшее число умножений, чем это требуется в определении степени.

Ссылки

Условие задачи на e-olymp
Код на Ideone
Засчитанное решение на e-olymp

e-olymp 8283. Музыка

Задача

Малыши и малышки очень любили музыку, а Гусля был замечательный музыкант. У него были разные музыкальные инструменты, и он часто играл на них. Их было много, поэтому он развесил их на стенах своей комнаты. Инструмент, расположенный справа от входной двери имел номер $1$, дальше они нумеровались по кругу, а последний инструмент с номером $n$ висел слева от этой двери.

Малыши часто просили его научить играть на каком-нибудь инструменте. Гусля не отказывал, но сначала предлагал взять инструмент с первым номером, а если ученику хотелось играть на другом, то он выбирал шестой следующий по кругу и так далее. Напишите программу, которая определяла номер попытки, с которой ученик мог получить желаемый инструмент с номером $k$.

Например, если количество инструментов $n = 11$, то последовательность будет следующей: $(1) 2 3 4 5 6 (7) 8 9 10 11 1 (2) 3 4 5 6 7 (8) 9 10 11 1 2 (3) 4 5$ …, то есть при $k = 3$ инструмент с номером $3$ можно было бы получить с пятой попытки.

Входные данные

Два натуральных числа $n$ и $k$ $(1 \leqslant k \leqslant n \leqslant 100)$.

Выходные данные

Вывести номер попытки, в который «выпадал» инструмент с номером $k$. Если это никогда не происходило, следует вывести $0$.

Тесты

Входные данные Выходные данные
1 11 3 5
2 6 2 0
3 13 13 3
4 9 8 0
5 5 5 5

Код

Решение

Для решения задачи нам необходимо рассмотреть ряд натуральных чисел, начиная с единицы и прибавляя каждый раз $6$. С помощью операции деления с остатком мы можем реализовать алгоритм нахождения номера музыкального инструмента. Однако логика решения изменяется в зависимости от введенных пользователем данных. Имеется два случая:

  1. Если пользователь вводит разные числа.
  2. Если пользователь вводит одинаковые числа.

В первом случае мы рассматриваем две ситуации:
1) если пользователь вводит количество инструментов $6$, то единственным решением будет инструмент под номером $1$, так как Гусля выбирает инструменты через $6$ штук по кругу;
2) если количество инструментов не равно $6$ то мы реализовываем алгоритм нахождения номера путем деления с остатком, а именно: если текущее число при делении на количество инструментов не дает в остатке искомый номер, мы прибавляем $1$ к числу попыток, а число увеличиваем на $6$, в противном случае мы нашли число попыток.
Еще здесь, так же, как и во втором случае, есть подводный камень: если мы уже сделали какое-то количество попыток и текущее число при делении на количество инструментов дает в остатке $1$, мы никогда не попадем на нужный нам номер инструмента.

Во втором случае мы также рассматриваем две ситуации:
1) если количество инструментов делится нацело на $2$, то нам никогда не выпадет нужный инструмент;
2) если текущее число при делении на количество инструментов не дает в остатке $0$, мы прибавляем $1$ к числу попыток, а число увеличиваем на $6$, в противном случае ответ найден.
Также не забываем про подводный камень, указанный выше.

Ссылки

  • Условие задачи на e-olymp
  • Код программы на ideone.com
  • Засчитанное решение на e-olymp

e-olymp 8671. Представимые суммой квадратов

Задача

Найдите все числа от $1$ до $n$, представимые в виде суммы двух квадратов различных натуральных чисел.

Входные данные

Одно натуральное число $n$ $( n \leqslant 10000)$.

Выходные данные

Выведите в одной строке в возрастающем порядке все числа от $1$ до $n$, представимые в виде суммы двух квадратов различных натуральных чисел.

Тесты

Входные данные  Выходные данные
1 5 5
2 10 5 10
3 13 5 10 13
4 20 5 10 13 17 20
5 30  5 10 13 17 20 25 26 29

Код программы

Решение

Для решения задачи создадим функцию check(), которая будет возвращать $true$, если число можно представить в виде суммы двух квадратов или же $false$, если нельзя. В функции перебираем всевозможные варианты $i$ и считаем $j$ для каждого $i$ по формуле $j=\sqrt{n-i^2}$, до тех пор пока не найдем целое (не равное $i$ ) $j$ или же не переберем все $i$. Просматриваем до $ i \cdot i < n $,  потому что сумма двух квадратов не может превышать заданного числа. Формулу получили выразив $j$ из исходной формулы $(i^2+j^2=n)$.

Ссылки

Условие задачи на e-olymp

Код программы на ideone

e-olymp 8946. Шаблон

Условие

По заданному натуральному числу $n$ вывести изображение размером $n\times n$, образованное символами звездочка и пробел как показано в примере.

Входные данные

Одно натуральное число $n$.

Выходные данные

Вывести изображение $n \times n$.

Тесты

Входные данные  Выходные данные
1 2
2 3
3 4
4 5
5 6

Код программы

Решение

Для того, чтобы вывести изображение как на рисунке достаточно заметить, что выводятся строки только двух видов и то поочерёдно. Первый вид — первым символом строки является $\ast$ и затем чередуется $\ast$ и пробел. Второй вид — первым символом строки является пробелом и затем чередуется $\ast$ и пробел. Мы заполняем две строки, по одной каждого вида. Нам остается только выводить строку необходимого нам вида, сделаем это в цикле.

Ссылки

Условие задачи на e-olymp

Код программы на ideone

e-olymp 419. Задача 3n + 1

Задача

Рассмотрим следующий алгоритм генерации последовательности чисел:

Например, для [latex]n = 22[/latex] будет сгенерирована следующая последовательность чисел:

22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

Полагают (но это еще не доказано), что этот алгоритм сойдется к [latex]n = 1[/latex] для любого целого [latex]n[/latex]. По крайней мере, это предположение верно для всех целых [latex]n[/latex], для которых [latex]0 < n < 1,000,000[/latex].
Длиной цикла числа [latex]n[/latex] будем называть количество сгенерированных чисел в последовательности включая [latex]1[/latex]. В приведенном примере длина цикла числа [latex]22[/latex] равна [latex]16[/latex].
Для двух заданных чисел [latex]i[/latex] и [latex]j[/latex] необходимо найти максимальную длину цикла среди всех чисел между [latex]i[/latex] и [latex]j[/latex] включительно.

Входные данные

Каждый тест задается в отдельной строке и содержит пару целых чисел [latex]i[/latex] и [latex]j[/latex]. Входные числа будут меньше [latex]1000000[/latex] и больше [latex]0[/latex]. Считайте, что для вычислений достаточно использовать [latex]32[/latex] битный целочисленный тип.

Выходные данные

Для каждой пары чисел [latex]i[/latex] и [latex]j[/latex] выведите числа [latex]i[/latex] и [latex]j[/latex] в том же порядке, в каком они поступили на вход. После чего выведите максимальную длину цикла среди всех целых чисел между [latex]i[/latex] и [latex]j[/latex] включительно. Для каждого теста три числа следует выводить в отдельной строке, разделяя одним пробелом.

Тесты

Входные данные Выходные данные
1 10
100 200
201 210
900 1000
1 10 20
100 200 125
201 210 89
900 1000 174
1 10
10 1
1 10 20
10 1 20
5 25
70 54
38 250
5 25 24
70 54 113
38 250 128

Код программы

Решение

Алгоритм, описанный в условии задачи используется для построения сиракузской последовательности. Интересный факт — какое бы число не взять, в конце получаем единицу. Нам же надо посчитать сколько раз должен сработать алгоритм для подсчитывания «длины цикла». Считывая пару чисел из потока ввода я высчитывал «длину цикла» для каждого числа из заданного введенной парой промежутка. После чего сравнивал количество итераций для каждого такого числа и находил максимальное. И так для каждой пары чисел.

Ссылки

Ссылка на e-olymp.
Ссылка на Ideone

e-olymp 1780. Коды Грея

Задача

Коды Грея получили своё название по имени Франка Грея (Frank Gray), физика из Bell Telephone Laboratories, который в 1930-х годах изобрёл метод, в настоящее время используемый для передачи цветного телевизионного сигнала, совместно с существующими методами передачи и получения чёрно-белого сигнала; т.е. при получении цветного сигнала чёрно-белым приёмником изображение выводится оттенками серого цвета.

Хотя существует множество различных вариантов кодов Грея, рассмотрим только один: «двоичный отражённый (рефлексный) код Грея». Именно этот код обычно имеется в виду, когда говорят о неконкретном «коде Грея».

Отображённый двоичный код Грея строится следующим образом. Начинаем со строк [latex]0[/latex] и [latex]1[/latex], которые представляют соответственно целые числа [latex]0[/latex] и [latex]1[/latex].

0
1

Возьмём отражение этих строк относительно горизонтальной оси после приведённого списка и поместим [latex]1[/latex] слева от новых записей списка, а слева от уже имевшихся разместим [latex]0[/latex].

00
01
11
10

Таким образом получен отражённый код Грея для [latex]n = 2[/latex]. Чтобы получить код для [latex]n = 3[/latex], повторим описанную процедуру и получим:

000
001
011
010
110
111
101
100

При таком способе построения легко увидеть по индукции по [latex]n[/latex], что, во-первых, каждая из [latex]2^n[/latex] комбинаций битов появляется в списке, причём только один раз; во-вторых, при переходе от одного элемента списка к рядом стоящему изменяется только один бит; в-третьих, только один бит изменяется при переходе от последнего элемента списка к первому. Коды Грея, обладающие последним свойством называются циклическими, и отражённый код Грея обязательно является таковым.

Для каждого заданного числа [latex]k[/latex] вывести десятичное значение [latex]k[/latex]-го кода Грея.

Входные данные

Во входном файле содержится некоторый набор тестовых данных, каждое число [latex]k (0 < k < 10^{18})[/latex] в наборе задано в отдельной строке. Количество наборов данных в одном тесте не превышает [latex]10^5[/latex].

Выходные данные

Для каждого заданного числа [latex]k[/latex] вывести в отдельной строке десятичное значение [latex]k[/latex]-го кода Грея.

Входные данные Выходные данные
1 3
14
5
12
2
9
7
10
2 10
50
15
43

Код программы

Решение

Рассмотрим биты числа [latex]n[/latex] и биты числа [latex]G(n)[/latex]. Заметим, что [latex]i[/latex]-ый бит [latex]G(n)[/latex] равен единице только в том случае, когда [latex]i[/latex]-ый бит [latex]n[/latex] равен единице, а [latex]i+1[/latex]-ый бит равен нулю, или наоборот ([latex]i[/latex]-ый бит равен нулю, а [latex]i+1[/latex]-ый равен единице). Таким образом, имеем: [latex]G(n) = n \oplus (n>>1)[/latex], где [latex]\oplus[/latex] — операция «побитовое исключающее ИЛИ», а [latex]>>[/latex] — «побитовый сдвиг вправо».

Ссылки

Ссылка на e-olymp.
Ссылка на Ideone