e-olymp 1868. Функция

Условие задачи
Вычислите функцию:
$$f(n)=\begin{cases} 1, \text{ если } n \leq 2 \\ f(\lfloor \frac{6\cdot n}{7} \rfloor)+f(\lfloor \frac{2\cdot n}{3} \rfloor), \text{ если } n \mod \; 2 = 1 \\ f(n-1)+f(n-3), \text{ если } n \mod \; 2 = 0 \end{cases}$$
Входные данные
Одно натуральное число $n$ $(1 \leq n \leq 10^{12})$
Выходные данные
Значение $f(n)$ , взятое по модулю $2^{32}$.
Тесты

Входные данные Выходные данные
10
7
123
229966
1
1
100
136345
51
5092

Код программы

Решение задачи
Решение данной задачи стоит начать с написания рекурсивной функции для вычисления функций по условию задачи. Так как рекурсия будет довольно таки сложной и много раз повторяются одни и те же результаты при вызове функции, следовательно, программа будет долгое время обрабатывать нашу задачу. То есть, к примеру, на 5 и 20 итерации, возвращаемые значения функции могут совпасть, что без оптимизации будет просчитываться еще раз, а с оптимизацией функция уже знает, чему равно значение с данными аргументами.Далее, по условию, мы пишем наконец нашу функцию:

  • Если число, которое ввел пользователь, меньше либо равно двум, то наша функция возвращает значение один.
  • Если есть значение с таким же ключом, то оно возвращает значение.
  • Если число, которое ввел пользователь, дает остаток от деления один, то наша функция возвращает значение $f(\lfloor \frac{6\cdot n}{7} \rfloor)+f(\lfloor \frac{2\cdot n}{3} \rfloor)$.
  • Во всех остальных случаях наша функция возвращает значение $f(n-1)+f(n-3)$.

Ссылки
Задача на сайте e-olymp
Код решения в Ideone

e-olymp 1872. Снеговики

Задача

Зима. 2012 год. На фоне грядущего Апокалипсиса и конца света незамеченной прошла новость об очередном прорыве в областях клонирования и снеговиков: клонирования снеговиков. Вы конечно знаете, но мы вам напомним, что снеговик состоит из нуля или более вертикально поставленных друг на друга шаров, а клонирование — это процесс создания идентичной копии (клона).

В местечке Местячково учитель Андрей Сергеевич Учитель купил через интернет-магазин «Интернет-магазин аппаратов клонирования» аппарат для клонирования снеговиков. Теперь дети могут играть и даже играют во дворе в следующую игру. Время от времени один из них выбирает понравившегося снеговика, клонирует его и:

  • либо добавляет ему сверху один шар;
  • либо удаляет из него верхний шар (если снеговик не пустой).

Учитель Андрей Сергеевич Учитель записал последовательность действий и теперь хочет узнать суммарную массу всех построенных снеговиков.

Входные данные

Первая строка содержит количество действий $n (1 ≤ n ≤ 200000)$. В строке номер $i + 1$ содержится описание действия:

  • $t m$ — клонировать снеговика номер $t (0 ≤ t < i)$ и добавить сверху шар массой $m (0 < m ≤ 1000)$;
  • $t 0$ — клонировать снеговика номер $t (0 ≤ t < i)$ и удалить верхний шар. Гарантируется, что снеговик не пустой.

В результате действия $i$, описанного в строке $i + 1$ создается снеговик номер $i$. Изначально имеется пустой снеговик с номером ноль.

Все входные числа целые.

Выходные данные

Выведите суммарную массу построенных снеговиков.

Тесты

Входные данные Выходные данные
8
0 1
1 5
2 4
3 2
4 3
5 0
6 6
1 0
74
4
0 3
1 2
2 1
1 1
18
2
0 1
1 5
7
5
1 2
3 4
5 5
1 7
5 6
26

Код задачи

 

Решение задачи

Считываем n  — количество действий. Задаем двухмерный массив размером [n+1][2] . Указываем значение первого элемента равное $0$ и нулевого элемента равного $-1$, чтобы он ни на что не ссылался в начале.  В цикле считываем номер снеговика, которого нужно клонировать и массу шара, которую нужно добавить. Если масса шара равна $0$, то мы клонируем снеговика и убираем последний его шар, ссылаясь на снеговика в котором этого шара еще не было. Если же масса шара не равно $0$, то мы клонируем снеговика и добавляем ему шар массой $m$. Во второй ячейке указываем предка с которого строится новый снеговик. Выводим общую массу снеговиков.

Ссылки

Условие задачи на e-olymp.com
Решение задачи на ideone.com

e-olymp 7340. Поле-чудес

Задача

Петрик і Марічка захопились грою поле-чудес: Марічка записує слово, що складається з великих англійських букв, а Петрик старається розпізнати його, причому відгадана буква відкривається на всіх позиціях, де вона міститься. За яку найменшу кількість ходів Петрик зможе відгадати задане слово.

Вхідні дані

Слово записане великими англійськими буквами (не більше [latex]100[/latex] символів).

Вихідні дані

Відповідь до задачі.

Тести

Вхідні дані Вихідні дані
[latex]GOOGLE[/latex] [latex]4[/latex]
[latex]ALBUS[/latex] [latex]5[/latex]
[latex]OOO[/latex] [latex]1[/latex]

Код програми

Рішення завдання

Створимо місце для слова і прочитаємо його,далі для того, щоб однакові букви йшли поряд і заведемо змінну, спочатку рівну [latex]1[/latex], так як слово складається мінімум з однієї букви, і будемо збільшувати її на [latex]1[/latex], якщо зустрінеться нова буква..

Код програми з множиною

Рішення завдання

Створимо місце і прочитаємо слово. Подалі кожну букву слова запишемо, як елемент множини [latex]і.[/latex] Так як множина автоматично видаляє всі однакові елементи, то відповіддю до завдання буде кількість елементів множини.

Посилання

Умова завдання на e-olymp.com.

Код рішення на ideone.com.

Код рішення з множиною на ideone.com.

e-olymp 1228. Добавить все

Условие

Условие задачи отражает Вашу задачу: необходимо просто сложить числа. Но это будет унизительно если Вас попросят просто написать такую программу на языке C/C++ для заданного множества чисел. Давайте внесем в задачу оттенок изобретательности.

Введем понятие стоимости для операции сложения. Стоимость сложения двух чисел положим равным их сумме. Например, сложить числа $1$ и $10$ стоит $11$. Стоимость сложения $1,2$ равна $3$. Складывать числа можно разными способами:

  1. $1 + 2 = 3$ (стоимость = 3), $3 + 3 = 6$ (стоимость = 6), Всего = 9
  2. $1 + 3 = 4$ (стоимость = 4), $2 + 4 = 6$ (стоимость = 6), Всего = 10
  3. $2 + 3 = 5$ (стоимость = 5), $1 + 5 = 6$ (стоимость = 6), Всего = 11

Надеемся, Вы поняли Вашу задачу. Вам необходимо сложить все числа так, чтобы суммарная стоимость их сложения была наименьшая.

Входные данные

Начинаются целым числом $n (2 \leq n \leq 100000)$, за которым следуют $n$ целых неотрицательных чисел (все числа меньше $100000$).

Выходные данные

Вывести наименьшую стоимость сложения всех чисел.

Тесты

Входные данные Выходные данные
$4$
$10$ $12$ $13$ $11$
$92$
$5$
$100$ $11$ $8$ $30$ $12$
$272$
$4$
$2$ $2$ $2$ $2$
$16$
$6$
$1$ $2$ $3$ $4$ $5$ $6$
$51$

Код решения

Решение

Стоимость сложения всех чисел будет минимальной, если на каждом следующем шаге мы будем складывать два наименьшие числа из множества $A$, состоящего из данного ряда чисел и уже вычисленных «частичных сумм». Таким образом, каждый шаг цикла поиска минимальной стоимости сложения будет состоять из нахождения двух минимальных чисел из множества, удаления этих чисел из множества $A$ и добавления в него результата их суммирования. В специальную переменную $minSum$ будем также каждый раз добавлять результат этого суммирования. Таким образом, количество элементов во множестве будет с каждым шагом уменьшаться на одно, и в конце, когда в нем останется единственный элемент, переменная $minSum$ будет содержать искомую стоимость сложения всех чисел.
Реализовать такой код достаточно просто, если реализовать множество $A$ в виде очереди с приоритетом.

Ссылки

Условие задачи на e-olymp.com
Код решения на ideone.com

e-olymp 93. Truck driving

Task

Umidsh Izadish is a truck driver and wants to drive from a city to another city while there exists a dedicated straight road between each pair of cities in that country. Amount of consumed fuel is the distance between two cities which is computed from their coordinates. There is a gas station in each city, so Umidsh can refuel the gas container of his truck. Your job is to compute the minimum necessary volume of gas container of Umidsh’s Truck.

Input data

The first line of input contains an integer, the number of test cases. Following, there are data for test cases. Each test case begins with a line containing one integer $C$, $2 /leq C /leq 200$, which is the number of cities. The next $C$ lines each contain two integers $x$,$y$ representing the coordinate of one city. First city is the source city and second is the destination city of Umidsh.

Output data

There should be one line for each test case in output. Each line should contain one floating point number which is the minimum necessary volume of truck’s gas container, printed to three decimals.

Tests

Input Output
$2$
$2$
$0$ $0$
$3$ $4$
$3$
$17$ $4$
$19$ $4$
$18$ $5$
$5.000$
$1.414$
$1$
$3$
$4$ $5$
$4$ $6$
$4$ $7$
$1.000$
$2$
$4$
$0$ $1$
$0$ $-1$
$1$ $0$
$-1$ $0$
$3$
$8$ $9$
$0$ $1$
$14$ $14$
$1.414$
$11.314$

Code

Solution

We can interpretate the set of the cities as weighted graph, which vertices represent cities and weight of each edge between two vertices is the gas volume required for passing the distance between corresponding cities.
The volume of truck’s gas container depends on the gas volume required for arrival to the each next station of the Umidsh’s way. The maximum between gas volume required to get to the city $A$ and gas volume required to pass the way from the city $a$ to the city $B$ represents the minimum necessary gas volume required to get to the city $B$ through the city $A$. So the volume of truck’s gas container would turn to minimum, when the maximum gas volume required for passing the distance between each two stations of his way would turn to minimum. Thus we could use modified Dijkstra’s algorithm to find the biggest value among the weights of an edges between each two stations of the way between vertice 0 and vertice 1.

Note: To use Node objects in the PriorityQueue, there should be a way to compare this objects. Thus, it was required to overwrite a method CompareTo so that we could implement interface Comparable

References

The task at e-olymp.com

e-olymp 977. Дерево?

Задача

Неориентированный граф без петель и кратных ребер задан матрицей смежности. Определить, является ли этот граф деревом.

Входные данные

Первая строка содержит количество вершин графа $n \left (1 \leq n \leq 100 \right).$ Далее записана матрица смежности размером $n × n$, в которой $1$ обозначает наличие ребра, $0$ — его отсутствие. Матрица симметрична относительно главной диагонали.

Выходные данные

Выведите сообщение YES, если граф является деревом, и NO в противном случае.

Тесты

Входные данные Выходные данные
[latex]3 \\ 0 \ 1 \ 0 \\ 1 \ 0 \ 1 \\ 0 \ 1 \ 0[/latex] [latex]YES[/latex]
[latex]2 \\ 0 \ 1 \\ 1 \ 0[/latex] [latex]YES[/latex]
[latex]4 \\ 0 \ 0 \ 0 \ 1 \\ 0 \ 0 \ 1 \ 0 \\ 0 \ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \ 0[/latex] [latex]NO[/latex]
[latex]1 \\ 0[/latex] [latex]YES[/latex]

Код программы

Решение задачи

Считываем граф в ArrayList<ArrayList>. Далее выбираем любую вершину и запускаем из нее своего рода dfs. Заключается он в том, что мы идем к потомкам текущей вершины, попутно смотря были ли мы здесь. Если были, завершаем процесс, так как мы нашли цикл (граф, содержащий цикл, не является деревом). При этом мы не идем от потомка к предку. В конце проверяем обошли ли мы все вершины и не встречались ли нам циклы.

Ссылки

Условие задачи на e-olymp
Код решения

e-olymp 4475. Часы

Задача

Жители планеты Олимпия любят летать в гости на другие планеты. Ученые планеты разработали часы, которые могут налаживаться для отсчета времени на любой планете. Эти часы состоят из шариков, лотка (очереди) и трех чаш: секундной, минутной и часовой. В каждый момент времени количество шариков в чашах показывает время (секунды, минуты и часы соответственно). Каждую секунду первый шарик из очереди попадает в секундную чашу. Если секундная чаша наполнилась (количество шариков равно количеству секунд в минуте на этой планете), то этот шарик переходит в минутную чашу, а остальные шарики переходят из секундной чаши в конец очереди в порядке, обратном к их попаданию в секундную чашу. Аналогично, при наполнении минутной чаши последний шарик переходит в часовую чашу, а остальные шарики из минутной чаши переходят в конец очереди в порядке, обратном к их попаданию в минутную чашу. Если заполняется часовая чаша, то все шарики из нее переходят в конец очереди в порядке, обратном к их попаданию в часовую чашу. Все шарики пронумерованы и в начальный момент времени находятся в очереди.

Написать программ, вычисляющую минимальное количество суток, необходимых для того, чтобы начальное положение шариков в очереди повторилось.

Входные данные

Входной файл содержит в единственной строке натуральные числа $S, M, H, K$ (количество секунд в минуте, минут в часе, часов в сутках и общее количество шариков соответственно), причем:

  • $S, M, H ≤ 60$;
  • $S+M+H-2≤K≤1000$

Выходные данные

Выходной файл должен содержать в единственной строке вычисленное Вашей программой количество суток.

Тесты

Входные данные Выходные данные
$5$ $12$ $12$ $30$ $380$
$7$ $10$ $40$ $70$ $5610$
$60$ $60$ $60$ $500$ $4560840$
$60$ $30$ $5$ $1000$ $4970$

Код программы

Алгоритм решения

  1. Интуитивно понятно, что положение шариков в очереди ежесуточно изменяется по одному и тому же закону, в силу однообразия процесса. Отыскать конкретный вид перестановки можно прямым моделированием часов, используя дек для описания лотка и стеки — каждой из чаш (у очереди задействованы оба конца, у чаш — только один).
  2. Определить порядок суточной перестановки можно и возведением её в степень, но это нерациональный способ. Используя теорему о разложении перестановки в композицию циклов (к слову, непересекающихся), можно заметить, что порядок каждого из циклов равен его длине. Если мысленно представить перестановку в виде ориентированного графа, то процесс поиска циклов сведётся к поиску в глубину: обойти каждую компоненту связности, зафиксировать число входящих в неё вершин (на илл.)
    $\begin{pmatrix}
    1& 2& 3& 4& 5& 6& 7& 8& 9& 10\\
    1& 5& 8& 2& 4& 3& 7& 7& 6& 10
    \end{pmatrix}$
    permutations in group
  3. Зная длины всех циклов, нетрудно заметить, что задача сводится к поиску НОК полученной последовательности длин. Обосновать такой переход можно индуктивно: порядок перестановки, представимой в виде композиции двух циклов, равен НОК их длин, а случай большего количества циклов в разложении сводится к рассмотренному последовательным рассмотрением пар циклов (результат не зависит от порядка рассмотрения в силу ассоциативности композиции).

Примечание

Операция взятия остатка для чисел с плавающей точкой не определена аппаратно, так что алгоритм Евклида вычисления НОД реализован в соответствии с его математическим описанием.

Ссылки

Условие задачи на e-olymp
Код решения

e-olymp 2892. Сумма значений

Задача

Найдите сумму значений функции
$$f \left(x \right ) = x + \frac{1}{x}$$
в нескольких целых точках.

Входные данные

В первой строке задано количество точек $n$ $\left (1 \leqslant n \leqslant 50 \right ).$ В следующей строке заданы $n$ целых чисел $x_1, x_2, …, x_n$ — точки, значения функции в которых нужно просуммировать $\left (0 \leqslant \left |x_i \right | \leqslant 10^9 \right ).$

Выходные данные

Выведите одно число — сумму значений функции $f \left(x \right )$ в заданных точках. Ответ считается правильным, если абсолютная или относительная погрешность не превышает $10^{-9}.$

Тесты

Входные данные Выходные данные
$3$ $7.833333333333333$
$1 \ 2 \ 3$
$2$ $0$
$1 \ -1$
$5$ $4.265140415140415$
$10 \ -13 \ 21 \ -18 \ 4$
$1$ $10.1$
$10$

Код программы

Решение задачи

Мы просто суммируем значения функции в каждой точке. Тут использовали класс BigDecimal для точек и значений функции для более высокой точности.

Ссылки

Условие задачи на e-olymp
Код решения

e-olymp 161. Роботы

Задача

На некотором заводе решили модернизировать производство и закупили для этого роботов. Так как для обработки детали требовалось выполнение двух операций, роботы также были двух типов: первую операцию выполняли роботы типа $A$, а вторую – роботы типа $B$. Чтобы сэкономить на покупке роботов, было решено купить не новых роботов последней модели, а уже бывших в употреблении. В результате, время, которое разные роботы тратили на выполнение одной и той же операции, существенно различалось, что привело к трудностям в планировании работ.

Составьте программу, которая по заданному набору роботов обоих типов определяет, за какое минимальное время они смогут обработать определенное количество деталей.

Входные данные

В первой строке натуральное число $N$, $1 ≤ N ≤ 100000$ – количество деталей, которое необходимо обработать.

Во второй строке натуральное число $N_a$, $1 ≤ N_a ≤ 1000$ – количество роботов, выполняющих первую операцию.

В третьей строке через пробел $N_a$ натуральных чисел $A_{i}$, $1 ≤ A_{i} ≤ 100$ – время, которое тратит $i$-ый робот типа $A$ на выполнение операции.

В четвертой строке натуральное число $N_b$, $1 ≤ N_b ≤ 1000$ – количество роботов, выполняющих вторую операцию.

В пятой строке через пробел $N_b$ натуральных чисел $B_{i}$, $1 ≤ B_{i} ≤ 100$ – время, которое тратит $i$-ый робот типа $B$ на выполнение операции.

Выходные данные

В первой строке одно целое число – минимальное время, за которое все $N$ деталей будут обработаны сначала роботом типа $A$, а потом роботом типа $B$. Временем передачи детали от робота типа $A$ роботу типа $B$ пренебречь.

Тесты

Входные данные Выходные данные
[latex]6[/latex] [latex]9[/latex]
[latex]3[/latex]
[latex]1\, 3\, 2[/latex]
[latex]2[/latex]
[latex]2\, 3[/latex]
[latex]2[/latex] [latex]5[/latex]
[latex]2[/latex]
[latex]3\, 2[/latex]
[latex]2[/latex]
[latex]2\, 3[/latex]
[latex]5[/latex] [latex]41[/latex]
[latex]4[/latex]
[latex]84\, 50\, 50\ 8[/latex]
[latex]2[/latex]
[latex]1\, 21[/latex]
[latex]100[/latex] [latex]100[/latex]
[latex]2[/latex]
[latex]1\, 50[/latex]
[latex]4[/latex]
[latex]1\, 2\, 3\, 4[/latex]

Код программы

Решение задачи

Решение состоит из двух этапов.
Найдем минимальное время, которое понадобится роботам первого типа, чтобы завершить обработку всех деталей. Для каждой детали, мы берем робота с минимальным временем завершения обработки этой детали и обновляем его время на время обработки им одной детали.
На втором этапе фактически делаем тоже, что и на первом с учетом следующей стратегии комбинации. Для детали, которая пройдет первый этап последней, на втором этапе резервируем самый быстрый из роботов второго типа.
Теперь оценим сложность работы алгоритма. Для каждой из $n$ деталей работает логарифмическая вставка в очередь с приоритетом. Получаем, что асимптотическая вычислительная сложность алгоритма $O(n\, \log n)$.

Ссылки

Условие задачи на e-olymp
Код решения
Видеозапись разбора задачи Евгением Задорожным на зимней школе по алгоритмам и программированию в Одесском национальном университете иемни И.И.Мечникова:

A281 Последовательные вычисления значений нового массива

Условие задачи:
Даны действительные числа [latex]a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}[/latex]. Члены последовательности [latex]c_{1}, \ldots, c_{n+1}[/latex] связаны с членами данных последовательностей соотношениями [latex]c_{n+1}=0, c_{\left (n+1\right )-i}=\frac{a_{\left (n+1\right )-i}}{b_{\left (n+1\right )-i}-c_{\left (n+1\right )-i+1}} \left (i=1, \ldots, n \right ).[/latex] Получить [latex]c_{1}, \ldots, c_{n+1}[/latex].

Входные данные:
В первой строке задано число [latex]n[/latex]. В последующих строках записано две числовые последовательности из n чисел.

Выходные данные:
Вывести результирующую последовательность [latex]c[/latex], найденную согласно условию задачи.

Тесты:

Входные данные Выходные данные
28 100 23 45 62 17 873 46 927 64 5 8 9 3 0 89 73 12 53 62 7 12 35 64 50 227 23 100 80
12 34 23 6 7 8 9 25 10 9 73 24 27 8 4 3 2 0 9 1 45 62 100 104 5 6 14 21
8.89145197864941 0.7532429753739995 3.46536409638595 10.014351523139867 -0.19111480725820545
95.9517680178081 -1.0983211464949347 50.88210356032888 6.781413598577088 0.5624396639914702
0.11015755091584475 0.3767441860465116 0.1111111111111111 0.0 4.803215151847447 -14.529255339679752
8.024345590557227 0.5045509487875016 -105.04390117066583 9.590229411789153 0.2700904535823736
0.5704400476332376 0.6438589905891021 0.5993533748082496 20.57676071984004 -6.031862745098037
9.813084112149534 3.8095238095238093 0.0
10 2 -4 1 2 45.2 34 -23 34 56 7.09
-3.4 4 4 -5 2.4 34.04 23 567 -3 4
-0.8567913942992066 -1.0657095142326265 0.24663198875517678 -0.05462407795229777 31.61389033873605 0.9702487256173882 -1.0025608427005548 0.05874893533055214 -11.733892090099529 1.7725 0.0

Код программы:

Алгоритм решения:
Узнаем количество необходимых элементов: считаем число [latex]n[/latex]. С помощью двух циклов также считаем все элементы массивов [latex]a[/latex] и [latex]b[/latex]. Заведем еще один счетчик для нахождения значений ячеек нового массива, воспользовавшись нашей заданной формулой [latex]c_{\left (n+1\right )-i}=\frac{a_{\left (n+1\right )-i}}{b_{\left (n+1\right )-i}-c_{\left (n+1\right )-i+1}} \left (i=1, \ldots, n \right )[/latex] при условии, что [latex]c_{n+1}=0.[/latex] Выведем все элементы единой строкой.

Код программы на Java
Условие задачи