A324. Делители одного числа, взаимно простые с другим

Задача

Даны целые числа [latex]p[/latex] и [latex]q[/latex]. Получить все делители числа [latex]q[/latex], взаимно простые с числом [latex]p[/latex].

Тесты

q p Все делители числа q, взаимно простые с числом p
40 15 1 2 4 8
87 3 1 29
Решение

Воспользуемся рекурсивной реализацией алгоритма Евклида. Пусть  m и  n  — не равные нулю целые неотрицательные числа, и пусть [latex]m\geq n[/latex]. Тогда, если [latex]n=0[/latex], [latex]GCD(n,m)=m[/latex], а если [latex]n\neq 0[/latex], то для чисел [latex]m,n[/latex] и [latex]k[/latex], где [latex]k[/latex], где [latex]k[/latex] — остаток от деления [latex]m[/latex] и [latex]n[/latex], выполняется равенство [latex]GCD(m,n)=GCD(n,k)[/latex].

Для нахождения делителей числа [latex]q[/latex] взаимно простых с [latex]p[/latex], программа проверяет остатки от деления [latex]q[/latex] на все числа [latex]i[/latex] от [latex]1[/latex] до [latex]q[/latex]. Если остаток равен нулю, то число [latex]i[/latex]  является делителем [latex]q[/latex]. Для каждого такого числа выполняется поиск наибольшего общего делителя (НОД — Greatest common divisor, GCD) [latex]i[/latex] и [latex]p[/latex] по алгоритму Евклида. [latex]1[/latex], то числа [latex]i[/latex] и [latex]p[/latex] взаимно простые.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *