А410е

Задача

Дана целочисленная матрица $ [a_{ij}], ij=1,\ldots,n.$ Получить $b_{1} \dots b_{n},$ где $b_{i}$ — это $\underset{1\leq j\leq n}{\max a_{ij}}\cdot \underset{1\leq j\leq n}{\min a_{ji}}$

Входные данные

Первая строка содержит число $n.$ Следующие строки содержат матрицу $n\times n.$

Выходные данные

Вывести $b_i \; i=1\dots n.$

Тесты

Входные данные Выходные данные
2
1 2
4 1
2 4
3
1 2 3
4 1 -6
1 -2 -1
3 -8 -6

Код программы

Решение

Очевидно, что из заданной матрицы нужно взять максимальный элемент $i$-й строки и умножить его на минимальный элемент $i$-го столбца. Для нахождения максимума [latex]a_{ij}[/latex], введем переменную и будем присваивать ей начальное значение первого элемента $i$-й строки. Чтобы при расчете максимума проходя по элементам строки мы не сравнивали каждый $i$-й элемент с первым, присваивать начальное значение максимуму будем в цикле по $i$. Аналогично с минимумом, но начальное значение минимума будет равно первому элементу $i$-го столбца.

Ссылки

Условие задачи
Код решения

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *