e-olymp 1206. f91

Задача

МакКарти — известный теоретик компьютерных наук. В одной из своих работ он определил рекурсивную функцию $f_{91}$, которая определена для всякого натурального числа $n$ следующим образом:

Если $n\leqslant100$, то $f_{91}\left(n\right) = f_{91}\left(f_{91}\left(n+11\right)\right)$;

Если $n\geqslant101$, то $f_{91}\left(n\right) = n-10$.

Входные данные

Натуральное число $n$, не большее $1000000$.

Выходные данные

Значение $f_{91}\left(n\right)$.

Тесты

ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
 1 5 91
 2 27 91
 3 91 91
 4 100 91
 5 102 92
 6 180 170

Код

 

Решение

Для решения задачи создадим функцию $f_{91}\left(n\right)$ которая в зависимости от значения $n$ будет выдавать нам разные значение, а имеено:
если $n\leqslant100$, то $f_{91}\left(n\right) = f_{91}\left(f_{91}\left(n+11\right)\right)$;
если $n\geqslant101$, то $f_{91}\left(n\right) = n-10$.
Так же, мы можем проследить законномерность того, что если $n\leqslant100$ функция $f_{91}\left(n\right)$ будет выдавть $91$, заметив это можно будет заменить сложную, но при этом красивую рекурсивную функцию на более простое и практичное решение и получить следущие соотношение:
$f_{91}\left(n\right) = \begin{cases} 91, & n\leqslant100;\\\ n-10, & n\geqslant101; \end{cases}$

Ссылки

  • Условие задачи на e-olymp
  • Код на Ideone
  • Засчитанное решение на e-olymp 

Добавить комментарий

Ваш адрес email не будет опубликован.