e-olymp 446. Ровные делители

Задача

Натуральное число $m$ называется ровным делителем числа $n$, если частное и остаток от деления $n$ на $m$ равны. По заданному натуральному числу $n$ найти количество его ровных делителей.

Входные данные

Натуральное число $n \space (1 ≤ n ≤ 10^{6})$.

Выходные данные

Выведите искомое количество ровных делителей числа $n$.

Тесты

Входные данные Выходные данные
5 1
20 2
200 6
653 1
5982 4

Код программы

Решение

Для решения этой задачи сперва введем переменную q , в которой будем хранить количество ровных делителей числа $n$. Затем запустим цикл, который будет проверять каждое из чисел от $1$ до $n$ включительно, является ли оно ровным делителем. Если условие выполняется, то увеличиваем значение, хранящееся в q на единицу. После цикла выведем искомое на экран.

Ссылки

Условие задачи на e-olymp
Код решения на Ideone
Решение этой же задачи на C++

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *