А701б

Условие задачи

Даны квадратная матрица [latex]A[/latex] порядка [latex]n[/latex] и вектор [latex]b[/latex] c [latex]n[/latex] элементами. Получить вектор \[A^{2} \cdot b\]

Алгоритм решения

Считываем матрицу. Возводим ее в квадрат ( перемножение матрицы осуществляется при помощи циклов). Считываем вектор. Умножаем матрицу на вектор. Выводим ответ.

Фактически, умножение матриц пишется по определению. Сумма произведений элементов строки на элементы столбцов.

Тесты

[latex]n[/latex] [latex]A[/latex] [latex]b[/latex] Результат
3 1 1 1
1 1 1
1 1 1
5 5 5 45 45 45
5 1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5
8 1 8 1 8 8 4 72 16 200
2 1 0
0 1
2 2 2 2

Код программы

Код на ideone.com.

Задача оригинал на языке С++(другого автора) на java.mazurok.com.

e-olymp 1704. Умная черепашка

Задача

Карта, где ходит черепашка
Имеется клетчатое поле размером $m \times n$. В левом нижнем углу сидит черепашка. Она умеет ходить только вправо или вверх. Перед тем как добраться до правого верхнего угла её заинтересовал вопрос: сколько существует способов добраться из исходной точки до правого верхнего угла?

Черепашка хотя и умная, но сама считать так много пока не умеет. Помогите черепашке найти ответ на свой вопрос.

Входные данные

Два натуральных числа $m$ и $n$, не превышающие $30$.

Выходные данные

Вывести количество способов, которыми черепашка сможет добраться из левого нижнего угла в правый верхний.

Тесты

Входные данные Выходные данные
$4$ $3$ $10$
$5$ $5$ $70$
$4$ $8$ $120$
$10$ $10$ $48620$

Код программы

Решение задачи

Для решения задачи представим, что черепашка уже находится в правом верхнем углу поля. Начинаем движение сверху-вниз справа-налево, т.е возможные ходы черепашки только наоборот(черепашка может ходит вверх и направо). Если черепашка сместилась вниз по карте, т.e. j > 0, то прибавляем ячейке значение верхней, если черепашка сместилась налево, т.e. i < m-1, то прибавляем ячейке значение правой. Эта сумма будет накапливаться и будет равна количеству всех возможных ходов черепашки. Проходя через всю карту, попадем в левую нижнюю ячейку(старт черепашки), эта ячейка и будет содержать число возможных путей к правой верхней точки. Задача решена.

Ссылки

Условие задачи на e-olymp
Код решения на ideone.com

e-olymp 992. Города и дороги

Задача

В галактике «Milky Way» на планете «Neptune» есть n городов, некоторые из которых соединены дорогами. Император «Maximus» галактики «Milky Way» решил провести инвентаризацию дорог на планете «Neptune». Но, как оказалось, он не силен в математике, поэтому он просит Вас сосчитать количество дорог.

Вводные данные

В первой строке записано число $n$ $(0 \leq n \leq 100)$. В следующих $n$ строках записано по $n$ чисел, каждое из которых является единичкой или ноликом. Причем, если в позиции $(i, j)$ квадратной матрицы стоит единичка, то $i$-ый и $j$-ый города соединены дорогами, а если нолик, то не соединены.

Выходные данные

Вывести одно число — количество дорог на планете «Neptune».

Тесты

Входные данные Выходные данные
$3$
$0$ $1$ $1$
$1$ $0$ $1$
$1$ $1$ $0$
$3$
$3$
$0$ $1$ $0$
$1$ $0$ $0$
$0$ $0$ $0$
$1$
$5$
$0$ $1$ $0$ $1$ $1$
$1$ $0$ $0$ $0$ $0$
$0$ $0$ $0$ $0$ $0$
$1$ $0$ $0$ $0$ $0$
$1$ $0$ $0$ $0$ $0$
$3$

Код программы(использование матрицы смежности)

Решение задачи(использование матрицы смежности)

Для решения задачи вводим матрицу смежности. Далее в цикле проходим верхнюю треугольную часть матрицы смежности и если попадается $1$, то увеличиваем число дорог на $1$. Выводим количество дорог. Задача решена.

Код программы(потоковая обработка)

Решение задачи(потоковая обработка)

Для решения задачи вводим числа пока они вводятся. Поскольку дороги идут с одного города в другой и наоборот, то их количество будет равно половине единичек в матрице смежности, то есть половине единичек входящих во входной поток. Cчитаем их количество и делим на $2$. Выводим количество дорог. Задача решена.

Ссылки

Условие задачи на e-olymp
Код решения на ideone.com(матрица смежности)
Код решения на ideone.com(потоковая обработка)

e-olymp 396. Дождь

Задача

Как это выглядит на координатной плоскости

Капля дождя падает вертикально вниз с большой высоты на землю. На пути у капли могут встретиться препятствия, которые изменяют ее путь к земле.

Будем рассматривать двумерный вариант (на плоскости) этой задачи. Пусть препятствия – это наклонные непересекающиеся отрезки, а капля имеет точечные размеры. Капля падает вертикально вниз из точки, расположенной выше любого из препятствий. Если капля при падении соприкасается с отрезком-препятствием, то она стекает по отрезку вниз, пока не упадет вертикально вниз с меньшего по высоте конца отрезка.

Напишите программу, которая по координате $X_0$ точки появления капли над землей вычисляет координату $X$ точки соприкосновения капли с землей $Y=0$.

Входные данные: во входном файле в первой строке содержатся два целых числа через пробел – координата $X_0$ точки появления капли $(0 < X_0 < 10000)$ и количество отрезков-препятствий $N(0≤N≤100)$. Далее следует $N$ строк, каждая из которых содержит четыре разделенные пробелами числа $x_1, y_1, x_2, y_2$ – координаты левого и правого концов отрезка-препятствия $($все числа целые и находятся в диапазоне от $0$ до $10000, x_1 < x_2, y_1 ≠y_2)$. Отрезки не пересекаются и не соприкасаются.

Выходные данные: в выходной файл вывести одно целое число – координату $X$ точки соприкосновения капли с землей.

Тесты

Входные данные Выходные данные
30 4
25 35 40 30
1 32 20 30
33 22 50 29
18 10 33 19
18
12 5
12 9 13 5
17 8 19 5
13 10 10 7
6 17 4 12
13 4 5 12
13
40 3
12 30 21 39
41 5 45 70
20 30 25 35
40
70 6
45 75 598 37
489 48 726 47
673 873 46 36
60 735 373 762
483 73 364 59
462 375 583 457
726

Код программы

Решение задачи

Сортируем наш динамический массив по наибольшим координатам $y$ и, если $y$ равны, по координатам $x$.

Далее составим алгоритм решения задачи:

  1. Если $X\in[x_1,x_2]$, то наша капля пересечется с данной прямой. В противном случае мы просто игнорируем данное препятствие.
  2. Тогда мы сравниваем координаты $y_1$ и $y_2$, выбираем из них наименьшее и присваиваем соответствующую координату $x_1$ или $x_2$ координате
    нашей капли $X$.
  3. Повторяем до тех пор, пока не будут обработаны все препятствия и выводим последнюю присвоенную координату $X$ нашей капли, так как она и будет координатой $x$ соприкосновения капли с зимой.

Ссылки

Условие задачи на e-olymp.com
Решение задачи на ideone.com

e-olymp 109. Нумерация

h1>Задача

Для нумерации [latex]m[/latex] страниц книги использовали [latex]n[/latex] цифр. По заданному [latex]n[/latex] вывести [latex]m[/latex] или [latex]0[/latex], если решения не существует. Нумерация начинается с первой страницы.

Входные данные

Единственное число [latex]n[/latex]. В книге не более [latex]1001[/latex] страницы.

Выходные данные

Вывести количество страниц в книге.

Тесты

Входные данные Выходные данные
27 18
15 12
9 9
49 29
50 0

Решение

Для решения этой задачи я описал [latex]3[/latex] переменные: [latex]n[/latex], [latex]m[/latex] и [latex]minus[/latex], где [latex]n[/latex]- количество цифр, использованных для нумерации страниц, [latex]m[/latex] — количество страниц и [latex]minus[/latex] — «счетчик», для определения количества цифр в числе [latex]a[/latex]. Использовал [latex]2[/latex] вложенных цикла, где счетчик [latex]a[/latex] — определяет разрядность числа страницы [latex]b[/latex]. Внутри вложенного цикла перед вычитанием [latex]minus[/latex] из [latex]n[/latex] поставил проверку на выполнения условий: если [latex]n==0[/latex], значит мы закончили считать страницы и если [latex]n-minus<0[/latex], значит на следующей итерации мы запишем [latex]n[/latex] в отрицательное значение, значит во входных данных была ошибка.

Ссылки

Ideone
e-olymp

e-olymp 128. Счастливые билеты

Задача. Подсчитайте количество счастливых билетов, у которых сумма первых трёх цифр равна N(N≤27). Счастливым билетом называется билет с шестизначным номером, у которого сумма первых трёх цифр равна сумме трёх последних.

Тесты

Число N 3 27 26 1 10
Количество билетов 100 1 9 9 3969

Код программы

Код можно увидеть тут.

Алгоритм

Любой шестизначный номер мы можем представить как 2 трехзначных номера.

Рассмотрим все варианты трехзначных номеров. Две первые цифры такого номера могут быть любыми. Переберем все их комбинации с помощью двух вложенных циклов. Для третьей цифры введем специальное условие. Она должна быть результатом вычитания двух первых цифр из [latex]N[/latex], а также быть именно цифрой, то есть меньшей 10.

Когда в цикле встречается подходящая комбинация, мы увеличиваем счетчик [latex]c[/latex] на 1. Поскольку на самом деле номер шестизначный, то каждой удачной комбинации в первой его половине будет соответствовать [latex]c[/latex] комбинаций во второй. Следовательно, искомое число счастливых билетов будет равно [latex]c^2[/latex].

Ссылка на авторское решение задачи.