e-olymp 8538. Калькулятор

Условие

Калькулятор Ильи выполняет два действия: умножает текущее число на три и прибавляет к нему единицу. На калькуляторе сейчас число $1$. Помогите Илье определить наименьшее количество действий, после которой он получит число $n$.

Входные данные

Одно число $n$ $\left(10\leq n\leq 10^9\right)$.

Выходные данные

Выведите наименьшее количество операций.

Тесты

Входные данные Выходные данные
1 1447 16
2 18 3
3 111 6

Код программы

Решение

Решим данную задачу от обратного. Пусть нам дано число $n$ и нам надо из него получить $1$, задействовав как можно меньше операций. Для этого объявим цикл while(), который будет работать до тех пор, пока наше число $n$ будет строго больше $0$. Внутри цикла опишем следующее решение: пусть k будет счётчиком нажатий на кнопки калькулятора и изначально равняется $0$. Тогда, при каждом шаге цикла мы к счётчику будем прибавлять остаток от деления на $3$. n%3 — именно столько раз нам потребуется отнять $1$ от $n$ чтобы можно было нацело разделить на $3$. Далее, делим $n$ на $3$ и это потребует еще одного нажатия (что и происходит в строке $13$). Так как в условии цикла мы написали, что $n > 0$, то мы пройдём лишнюю итерацию и к счётчику прибавятся два лишних шага. Поэтому, при выводе ответа, от $k$ отнимаем $2$.