e-olymp 4439. Возведение в степень

Задача

Вычислить значение $a^b$.

Входные данные

Два натуральных числа $a$ и $b$.

Выходные данные

Выведите значение $a^b$, если известно что оно не превосходит $10^{18}$.

Тесты

ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
 1 1 100 1
 2 2 10 1024
 3 3 7 2187
 4 8 9 134217728
 5 10 10 10000000000
 6 100 9 1000000000000000000

Код

Решение

Для решения задачи создадим функцию «pow()», заметим, что для любого числа $a$ и чётного числа $b$ выполнимо очевидное тождество (следующее из ассоциативности операции умножения):
$$a^b = \left(a^2\right)^{\frac{b}{2}}= \left(a\cdot a\right)^{\frac{b}{2}}$$
Оно и является основным в методе бинарного возведения в степень. Действительно, для чётного $b$ мы показали, как, потратив всего одну операцию умножения, можно свести задачу к вдвое меньшей степени.
Осталось понять, что делать, если степень b нечётна. Здесь мы поступаем очень просто: перейдём к степени b-1, которая будет уже чётной:
$$a^b = a^{b-1} \cdot a$$
Итак, мы фактически нашли рекуррентную формулу: от степени $b$ мы переходим, если она чётна, к $\frac{b}{2}$, а иначе — к $b-1$.

Примечание

Задача требует использование быстрого алгоритма, так как прямое умножение $b$ раз для возведение в $b$-ю слишком медленно, из-за большого количества перемножений. Алгоритм быстрого возведения в степень — это предназначенный для возведения числа в натуральную степень за меньшее число умножений, чем это требуется в определении степени.

Ссылки

Условие задачи на e-olymp
Код на Ideone
Засчитанное решение на e-olymp

e-olymp 123. Количество нулей у факториала

Задача

Найти количество нулей в конце записи факториала числа $n$.

Входные данные

Одно число $n$ $(1 \leqslant n \leqslant2\cdot10^9)$

Выходные данные

Количество нулей в конце записи $n!$

Тесты

ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
 1 1 0
 2 7 1
 3 12 2
 4 100 24
 5 306 75
 6 5000 1249

Код

Решение

Каждый нуль в конце искомого числа возникает от произведения чисел 2 и 5 — других вариантов нет. Очевидно, множителей 5 будет меньше множителей 2. Значит, количество нулей определяется исключительно количеством множителей-пятерок. Один такой множитель содержат числа 5, 10, 15, 20, 25, …, $n$ — всего их насчитывается $\frac{n}{5}$. Два множителя содержат числа 25, 50, …, $n$ всего их $\frac{n}{5^2}$.Три множителя содержат $\frac{n}{5^3}$.Складывая количество множителей с учетом их повторения, найдем общее их количество:

$\lfloor\frac{n}{5}\rfloor+\lfloor\frac{n}{5^2}\rfloor+\lfloor\frac{n}{5^3}\rfloor+\ldots+\lfloor\frac{n}{5^k}\rfloor$

Суммирование происходит до тех пор, пока очередное слагаемое не станет равным 0.

Ссылки

Формула разложения на простые множители

Условие задачи на e-olymp

Код на Ideone

Засчитанное решение на e-olymp 

e-olymp 1206. f91

Задача

МакКарти — известный теоретик компьютерных наук. В одной из своих работ он определил рекурсивную функцию $f_{91}$, которая определена для всякого натурального числа $n$ следующим образом:

Если $n\leqslant100$, то $f_{91}\left(n\right) = f_{91}\left(f_{91}\left(n+11\right)\right)$;

Если $n\geqslant101$, то $f_{91}\left(n\right) = n-10$.

Входные данные

Натуральное число $n$, не большее $1000000$.

Выходные данные

Значение $f_{91}\left(n\right)$.

Тесты

ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
 1 5 91
 2 27 91
 3 91 91
 4 100 91
 5 102 92
 6 180 170

Код

 

Решение

Для решения задачи создадим функцию $f_{91}\left(n\right)$ которая в зависимости от значения $n$ будет выдавать нам разные значение, а имеено:
если $n\leqslant100$, то $f_{91}\left(n\right) = f_{91}\left(f_{91}\left(n+11\right)\right)$;
если $n\geqslant101$, то $f_{91}\left(n\right) = n-10$.
Так же, мы можем проследить законномерность того, что если $n\leqslant100$ функция $f_{91}\left(n\right)$ будет выдавть $91$, заметив это можно будет заменить сложную, но при этом красивую рекурсивную функцию на более простое и практичное решение и получить следущие соотношение:
$f_{91}\left(n\right) = \begin{cases} 91, & n\leqslant100;\\\ n-10, & n\geqslant101; \end{cases}$

Ссылки

  • Условие задачи на e-olymp
  • Код на Ideone
  • Засчитанное решение на e-olymp