e-olymp-7410.Маршрутне таксі

Задача

У годину пік на зупинку одночасно під’їхали три маршрутних таксі, які слідують по одному маршруту, в які тут же набилися пасажири. Водії виявили, що кількість людей у ​​різних маршрутках різна, і вирішили пересадити частину пасажирів так, щоб у кожній маршрутці було порівну пасажирів. Потрібно визначити, яку найменшу кількість пасажирів доведеться при цьому пересадити.

Вхідні дані

Три натуральних числа, що не перевищують [latex]100[/latex] — кількості пасажирів у першій, другій і третій маршрутках відповідно.

Вихідні дані

Виведіть одне число — найменшу кількість пасажирів, яку потрібно пересадити. Якщо це неможливо, виведіть слово [latex]IMPOSSIBLE[/latex] (великими літерами).

Тести

Вхідні дані Вихідні дані
[latex]1[/latex] [latex]1[/latex] [latex]4[/latex] [latex]2[/latex]
[latex]1[/latex] [latex]2[/latex] [latex]4[/latex] [latex]IMPOSSIBLE[/latex]
[latex]1[/latex] [latex]3[/latex] [latex]5[/latex] [latex]2[/latex]
[latex]9[/latex] [latex]3[/latex] [latex]9[/latex] [latex]4[/latex]

Код програми

Рішення завдання

Спочатку відріжемо усі варіанти при яких розподілити пасажирів порівну не вийде так, що коли іх загальна кількість не ділиться націло на [latex]3[/latex] виводимо [latex]IMPOSSIBLE[/latex]. Коли розподілити пасажирів можна, розглядаємо [latex]4[/latex] випадки : коли у різних маршрутках кількість людей різна та коли у будь-яких двох маршрутках кількість однакова. Коли кількість різна, від максимальної кількості людей у трьох маршрутках віднімаємо число, яке дорівнює [latex]{{1}\over{3}}[/latex] від загальної кількості людей(у кінці ми маємо отримати це число, як кількість пасажирів у всіх маршрутних таксі), коли у двох маршрутках кількість однакова , то від кількості людей(у маршрутці, де іх більше або менше) віднімаємо число, яке дорівнює [latex]{{1}\over{3}}[/latex] від загальної кількості людей. Якщо відповідь менше [latex]0[/latex] то помножуюмо на [latex]-1[/latex].

Посилання

Умова завдання на e-olymp.com.

Код рішення на ideone.com.