e-olymp 61. Уборка снега

Задача

Зимой, когда дни стают короче, а ночи длиннее, необходимо задуматься об уборке снега с улиц. Поскольку бюджет нашего города очень маленький, у нас в распоряжении только один снегоход. Несмотря на это дороги должны быть прочищены. И каждый раз, когда выпадает много снега, ночью снегоход нашего города выезжает со своего гаража и объезжает весь город, очищая дороги. Какое минимальное время нужно снегоходу, чтобы очистить все проезжие полосы всех дорог и вернуться назад?

При этом известно, что:

  • Снегоход может очищать только одну проезжую полосу дороги за один проход.
  • Все дороги прямые с одной полосой движения в каждом направлении.
  • Снегоход может поворачивать на любом перекрестке в любую сторону, а также может развернуться в тупике.
  • Во время очистки снега снегоход двигается со скоростью 20 км/час, и со скоростью 50 км/час по уже очищенной дороге.
  • Возможность проехать все дороги всегда существует.

Входные данные

Первая строка содержит два числа $x$ и $y$ ($-30000 \leq x, y \leq 30000$) — координаты ангара (в метрах), откуда начинает свое движение снегоход. Далее в каждой отдельной строке заданы координаты (в метрах) начала и конца улиц (по $4$ числа в строке). В городе может быть до $100$ улиц.

Выходные данные

Время в часах и минутах, необходимое для очистки всех дорог и возврата в ангар. Время следует округлить до ближайшей минуты

Тесты

Входные данные Выходные данные
$0$ $0$
$0$ $0$ $-1000$ $2000$
$0$ $0$ $1000$ $2000$
$0:27$
$0$ $1000$
$0$ $0$ $0$ $3000$
$0$ $0$ $1000$ $1000$
$0$ $0$ $3000$ $0$
$3000$ $0$ $3000$ $3000$
$3000$ $3000$ $0$ $3000$
$0$ $3000$ $1000$ $2000$
$3000$ $0$ $2000$ $1000$
$3000$ $3000$ $2000$ $2000$
$1:46$
$-500$ $0$
$-1000$ $0$ $0$ $0$
$0$ $0$ $1000$ $0$
$-1000$ $1000$ $0$ $0$
$-1000$ $1000$ $0$ $2000$
$0$ $2000$ $1000$ $1000$
$1000$ $1000$ $0$ $1000$
$0$ $1000$ $0$ $0$
$0:49$
$1000$ $500$
$-1000$ $0$ $1000$ $0$
$-1000$ $1000$ $1000$ $1000$
$-1000$ $0$ $-1000$ $1000$
$1000$ $0$ $1000$ $1000$
$-1000$ $0$ $1000$ $1000$
$1000$ $0$ $-1000$ $1000$
$-1000$ $1000$ $0$ $2000$
$0$ $2000$ $1000$ $1000$
$1:20$
$500$ $-500$
$0$ $0$ $1000$ $-1000$
$1000$ $-1000$ $2000$ $0$
$2000$ $0$ $3000$ $-1000$
$3000$ $-1000$ $4000$ $0$
$4000$ $0$ $5000$ $-1000$
$5000$ $-1000$ $6000$ $0$
$0$ $0$ $8000$ $0$
$1:39$

Код программы

Решение задачи

Пусть граф $G = \left \langle V, U \right \rangle$ — граф, ребра которого — указанные в задаче дороги, а вершины — перекрестки. Граф $G$ — ориентированный, при чем, в силу того, что все дороги имеют двустороннее движение, из того, что $\left ( v_i, v_j \right ) \in U$ следует, что $\left ( v_j, v_i \right ) \in U.$ Из этого следует, что полустепень захода каждой вершины равна ее полустепени исхода, из чего, по критерию существования Эйлерова цикла, граф $G$ содержит Эйлеров цикл, т.е. существует путь, такой, что снегоход сможет очистить все дороги, пройдя по каждой ровно один раз в каждую сторону, следовательно длина такого пути будет равна удвоенной длине дорог. Снегоход всегда двигается со скоростью $V = 20 \text{км/час} = \frac{1000}{3} \text{м/мин}.$ По каждой из дорог снегоход проезжает два раза, таким образом общее искомое время минутах: $t = \frac{2L}{V} = \frac{3L}{500},$ где $L$ — длина всех дорог.
Замечание. Как видно из алгоритма решения, не имеет значения, где конкретно расположена точка начала движения, главное, чтобы она располагалась на одной из улиц.

Ссылки

Условие задачи на e-olymp

Решение задачи на e-olymp

Код решения

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *