e-olymp 123. Количество нулей у факториала

Задача

Найти количество нулей в конце записи факториала числа $n$.

Входные данные

Одно число $n$ $(1 \leqslant n \leqslant2\cdot10^9)$

Выходные данные

Количество нулей в конце записи $n!$

Тесты

ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
 1 1 0
 2 7 1
 3 12 2
 4 100 24
 5 306 75
 6 5000 1249

Код

Решение

Каждый нуль в конце искомого числа возникает от произведения чисел 2 и 5 — других вариантов нет. Очевидно, множителей 5 будет меньше множителей 2. Значит, количество нулей определяется исключительно количеством множителей-пятерок. Один такой множитель содержат числа 5, 10, 15, 20, 25, …, $n$ — всего их насчитывается $\frac{n}{5}$. Два множителя содержат числа 25, 50, …, $n$ всего их $\frac{n}{5^2}$.Три множителя содержат $\frac{n}{5^3}$.Складывая количество множителей с учетом их повторения, найдем общее их количество:

$\lfloor\frac{n}{5}\rfloor+\lfloor\frac{n}{5^2}\rfloor+\lfloor\frac{n}{5^3}\rfloor+\ldots+\lfloor\frac{n}{5^k}\rfloor$

Суммирование происходит до тех пор, пока очередное слагаемое не станет равным 0.

Ссылки

Формула разложения на простые множители

Условие задачи на e-olymp

Код на Ideone

Засчитанное решение на e-olymp 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *