e-olymp 271. Факториал!

Задача

Найти значение факториала целого числа [latex]n[/latex]

Входные данные

Одно целое число [latex]n(0\leq n\leq 3000)[/latex].

Выходные данные

Выведите факториал числа [latex]n[/latex].

Тесты

Входные данные Выходные данные
3 6
5 120
1 1

Код программы

Решение

Факториал натурального числа [latex]n[/latex] определяется как произведение всех натуральных чисел от [latex]1[/latex] до [latex]n[/latex] включительно.
Для решения данной задачи создаем класс [latex]factorial[/latex] для вычисления факториала. А потом используем метод [latex]factorial[/latex] в классе [latex]main[/latex].

Ссылки

e-olymp
Ideone

e-olymp 922. Сдвинь элементы

Условие задачи
Задан массив целых чисел длины $n$. Сдвинуть элементы массива вправо циклически на $1$ шаг.
Входные данные
В первой строке задано количество элементов массива $n$$(n ≤ 100)$ . Во второй строке заданы сами элементы массива, значение каждого из которых по модулю не превышает $100$.
Выходные данные
В одной строке вывести $n$ чисел — новые значения элементов массива.
Тесты

Входные данные Выходные данные
4
1 2 3 4 5
4 1 2 3
6
3 3 3 3 3 1
1 3 3 3 3 3
2
1 2
2 1

Код программы

Решение задачи
Создаем динамический массив, размером в number элементов. Создаем переменную last, в которой записан последний элемент массива. Создаём цикл, в котором меняется каждый элемент массива с предыдущим. Кладем на $1$ место (точнее $0$ место) бывший последний элемент массива.
Выводим массив.
Ссылки
Задача на сайте e-olymp
Код решения в Ideone

e-olymp 622. Единицы

Единицы

На уроках информатики вас, наверное, учили переводить числа из одних систем счисления в другие и выполнять другие подобные операции. Пришло время продемонстрировать эти знания. Найдите количество единиц в двоичной записи заданного числа.

Входные данные

Одно целое число $n$ $(0 ≤ n ≤ 2 \cdot 10^{9})$.

Выходные данные

Вывести количество единиц в двоичной записи числа $n$.

Тесты

ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
20 2
0 0
1 1
5 2
2000000000 13

Код программы

Решение задачи

Алгоритм заключается в последовательном делении заданного числа $n$ на $2$ и нахождении количества остатков от деления (по условию), равных единице. Полагаем начальное количество единиц $k$ равное нулю. Затем, нужно прибавить остаток от деления к имеющемуся у нас $k$. Если остаток равен единице то мы получим $k+1$ что нам и требуется.

Условие задачи на e-olimp
Код решения ideon

e-olymp 1607. Число в обратном порядке

Задача

Запишите целое неотрицательное число $n$ в обратном порядке.

Вводные данные

Одно целое неотрицательное $64$-х разрядное число.

Выходные данные

Выведите число в обратном порядке.

Тесты

Входные данные Выходные данные
$1234$ $4321$
$100$ $001$
$34567$ $76543$
$10983743$ $34738901$
$98352374234$ $43247325389$

Код программы

Решение задачи

Для решения задачи вводим строку. Узнаем ее длину с помощью функции с.length(), затем циклом выводим строку в обратном порядке. Задача решена.

Ссылки

Условие задачи на e-olymp
Код решения на ideone.com

e-olymp 1119. Пирамида из символов

Задача

Вася хочет напечатать на принтере пирамиду из какого-то символа высоты $h$. Напишите программу, которая поможет ему в этом, не забывая, что программа должна быть «экономически выгодной», т.е печатать наименьшее количество символов.

Примеры пирамид приведены в примерах входных и выходных данных. Для большей наглядности печатаемые пробелы заменены на точки.

Входные данные

В одной строке задан сначала символ, при помощи которого должна быть напечатана пирамида, а затем через пробел натуральное число, задающее высоту пирамиды $h (h ≤ 50)$.

Выходные данные

В первой сроке выведите общее количество напечатанных «печатных» символов а ниже саму пирамиду.

Тесты

Входные данные Выходные данные
A 3 12
A
AAA
AAAAA
M 9 117
M
MMM
MMMMM
MMMMMMM
MMMMMMMMM
MMMMMMMMMMM
MMMMMMMMMMMMM
MMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMM

Код программы

Решение

Для решения данной задачи потребуется выводить пробелы для отступов в каждой строке и заданный символ в виде пирамиды. Для этого напишем цикл, который будет перебирать строки. Для нахождения количества символов в пирамиде используем формулу: по арифметической прогрессии, где первый элемент это $1$, а каждый следующий больше предыдущего на $2$. В вывод пишется столько пробелов, сколько нужно для правильного расположения (с каждой следующей строчкой пробелов на $1$ меньше, в первой строке $b$ пробелов).

Ссылки

e-olymp
Ideone

e-olymp 7809. Утренняя зарядка

Задача


Утром многие школьники делают танцевальную зарядку. По сложившейся традиции, ученики танцуют в фирменных футболках. За первые три дня изменения школьниками и преподавателями было замечено, что пара, которая танцует в одинаковых футболках, выглядит эстетичнее. Они решили перед началом зарядки сначала поставить пару из детей в одинаковых футболках, а затем с оставшихся. Отличнику Сереже захотелось научиться быстро считать, сколько эстетических пар можно образовать из всех, кто пришел на зарядку.

Входные данные

Единственная строка входного файла содержит последовательность чисел, записанных через пробел, означающие цвет футболки. Цвет — число в диапазоне от [latex]0[/latex] до [latex]9.[/latex] Всего в строке не более, чем [latex]10^6[/latex] чисел.

Выходные данные

В выходной файл нужно вывести единственное число — количество эстетических пар, которые можно сложить.

Тесты

# Входные данные Выходные данные
1 0 3 6 3 0 0 1 2
2 8 8 9 9 7 6 7 8 4 3
3 5 6 7 3 2 0
4 2 7 6 8 9 2 1 1
5 8 7 7 5 4 3 5 4 8 4

Код программы

Решение задачи

Для того, чтобы решить задачу нужно найти количество пар, которые можно составить с заданной последовательности чисел. Для этого создаем массив, состоящий из [latex]10[/latex] элементов, где будем хранить числа, которые означают цвет футболки. Далее будем считывать символы и считать количество каждого. После прочтения входного потока, найдем числа, из которых можно составить пару,и выведем их количество на экран.

Ссылки

Ссылка на e-olymp
Ссылка на ideone

e-olymp 7623. Счастливые случаи

Счастливые случаи

Счастливый случай — это лотерея. Каждый лотерейный билет имеет игровое поле и закрытую область. Игровое поле представляет собой прямоугольник размера $r \times c$, заполненный числами. Закрытая область скрывает номер строки и колонки, на пересечении которых находится игровая ячейка.
Существует четыре возможных выигрышных направления: вверх, вниз, влево и вправо. Направление считается выигрышным, если все числа в этом направлении от игровой ячейки в точности меньше числа в самой игровой ячейке. Если игровая ячейка находится на краю таблицы, то Вы автоматически имеете выигрышное направление!

Входные данные

В первой строке находятся два целых числа $r$ и $c$ $(1 \leqslant r, c \leqslant 100)$ — количество строк и колонок в таблице.
Каждая из следующих $r$ строк содержит $c$ чисел — значения на игровом поле. Каждое число положительно и не превосходит 1000.

Выходные данные

Вывести одно число $w$ — общее количество выигрышных направлений для заданной таблицы.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 $1$ $1$
$4$
$4$
2 $2$ $4$
$0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$
$12$
3 $3$ $2$
$10$ $10$ $10$ $10$ $4$ $5$
$13$
4 $2$ $2$
$1$ $2$ $3$ $4$
$12$
5 $0$ $0$ $0$

 

Код программы

Решение задачи

Решение данной задачи состоит в том, чтобы создать цикл, который будет сравнивать все элементы массива. Изначально у нас будут четыре переменных, которые отвечают за каждую из сторон массива, равные единице. Далее мы сравниваем каждый элемент строки с последующими в нужном направлении и если он не является выигрышным, то соответствующей переменной задаем значение ноль. Просуммировав все «выигрышные случаи» мы узнаем количество выигрышных направлений.

Ссылки

• Задача на e-olymp.

• Решение на сайте ideone.

e-olymp 1611. Реверс подстроки

Задача

Дана строка $s$, в которой выделили подстроку, состоящую из символов с $i$-го по $j$-ый включительно (символы строки $s$ нумеруются с единицы) и поменяли местами $i$-ый символ с $j$-ым и так далее (конвертировали подстроку). Выведите строку $s$ после внесенных изменений.

Входные данные

В первой строке содержится строка $s$ длиной не более $1000$ символов, во второй — два числа $i$ и $j$ $\left ( i \leq j \right ).$

Выходные данные

Выведите строку $s$ после внесенных изменений.

Тесты

Входные данные Выходные данные
$zbbg \\ 2 \ 3$ $zbbg$
$gaqipkajibk \\ 5 \ 6$ $gaqikpajibk$
$helloworld \\ 5 \ 7$ $helloworld$
$eolymp1611 \\ 7 \ 8$ $eolymp6111$

Код программы

Решение

Для решения задачи вводим строку $str$ и преобразуем её в массив символов $(char)$. Далее в цикле конвертируем подстроку и выводим строку $s$ после внесенных изменений.

Ссылки

Условие задачи на e-olymp

Код решения задачи ideone

e-olymp 2807. Кубики-3

Задача

Дома у Витека было [latex]2[/latex] одинаковых набора кубиков из английских букв, но во время очередной уборки один из кубиков затерялся. Помогите Витеку определить, какой же из кубиков отсутствует в одном из наборов.

Входные данные

В первой строке задано количество найденных Витеком кубиков [latex]n[/latex] [latex](1 \leqslant n \leqslant 10^5),[/latex] а во второй строке n символов, изображённых на каждом из кубиков

Выходные данные

Выведите букву, изображённую на потерявшемся кубике, либо сообщение [latex]»Ok»,[/latex] если Витек ошибся и ни один из кубиков не потерялся.

Тесты

# Входные данные Выходные данные
1 5 abcac b
2 8 ryirhiyh Ok
3 3 AVA V
4 6 DjkjDk Ok
5 7 LnCsCnL s

Код программы

Решение задачи

Для того, чтобы решить задачу, мы проверяем четное ли количество кубиков, найденных Витеком. Воспользуемся оператором присваивания побитового исключающего или, с помощью которого мы будем сравнивать индексы символов, полученные из массива строки. Если количество кубиков четное, то переменная [latex]res[/latex] будет равна нулю, следовательно не один из кубиков не потерялся и мы увидим сообщение с текстом [latex] «Ok»[/latex]. Иначе выводится символ, который изображен на потерянном кубике.

Ссылки

Ссылка на e-olymp
Ссылка на ideone

e-olymp 1388. Заправки

Задача с сайта e-olymp.com.

Условие задачи

В стране n городов, некоторые из которых соединены между собой дорогами. Для того, чтобы проехать по одной дороге требуется один бак бензина. В каждом городе бак бензина имеет разную стоимость. Вам требуется добраться из первого города в n-ый, потратив как можно меньшее количество денег.

Входные данные

Сначала идет количество городов n (1 ≤ n ≤ 100), затем идет n чисел, i-ое из которых задает стоимость бензина в i-ом городе (все числа целые из диапазона от 0 до 100). Затем идет количество дорог m в стране, далее идет описание самих дорог. Каждая дорога задается двумя числами — номерами городов, которые она соединяет. Все дороги двухсторонние (то есть по ним можно ездить как в одну, так и в другую сторону); между двумя городами всегда существует не более одной дороги; не существует дорог, ведущих из города в себя.

Выходные данные

Выведите одно число — суммарную стоимость маршрута или -1, если добраться невозможно.

Тесты

Входные данные Выходные данные
1 4
1 10 2 15
4
1 2 1 3 4 2 4 3
3
2 4
1 10 2 15
0
-1
3 5
1 2 3 4 5
4
1 2 2 3 3 4 4 5
10

Код программы

Описание

Оптимальную стоимость маршрута будем находить по алгоритму Дейкстры. Цены на бензин в i-ом городе хранятся в массиве price. Минимальные стоимости маршрутов к каждому из городов хранятся в массиве distance, изначально все маршруты принимаем бесконечно дорогими. Кроме того, для хранения информации о том, был ли рассмотрен i-й город, используется массив used. Сам граф представляется в виде списка смежности. Для этого используется массив векторов graph. Если в итоге стоимость маршрута до целевого города осталась бесконечной, значит, пути к нему не существует, и выводится -1. Иначе выводится эта стоимость.

Код на ideone.com.

Засчитанное решение на e-olymp.com.