e-olymp 419. Задача 3n + 1

Задача

Рассмотрим следующий алгоритм генерации последовательности чисел:

Например, для [latex]n = 22[/latex] будет сгенерирована следующая последовательность чисел:

22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

Полагают (но это еще не доказано), что этот алгоритм сойдется к [latex]n = 1[/latex] для любого целого [latex]n[/latex]. По крайней мере, это предположение верно для всех целых [latex]n[/latex], для которых [latex]0 < n < 1,000,000[/latex].
Длиной цикла числа [latex]n[/latex] будем называть количество сгенерированных чисел в последовательности включая [latex]1[/latex]. В приведенном примере длина цикла числа [latex]22[/latex] равна [latex]16[/latex].
Для двух заданных чисел [latex]i[/latex] и [latex]j[/latex] необходимо найти максимальную длину цикла среди всех чисел между [latex]i[/latex] и [latex]j[/latex] включительно.

Входные данные

Каждый тест задается в отдельной строке и содержит пару целых чисел [latex]i[/latex] и [latex]j[/latex]. Входные числа будут меньше [latex]1000000[/latex] и больше [latex]0[/latex]. Считайте, что для вычислений достаточно использовать [latex]32[/latex] битный целочисленный тип.

Выходные данные

Для каждой пары чисел [latex]i[/latex] и [latex]j[/latex] выведите числа [latex]i[/latex] и [latex]j[/latex] в том же порядке, в каком они поступили на вход. После чего выведите максимальную длину цикла среди всех целых чисел между [latex]i[/latex] и [latex]j[/latex] включительно. Для каждого теста три числа следует выводить в отдельной строке, разделяя одним пробелом.

Тесты

Входные данные Выходные данные
1 10
100 200
201 210
900 1000
1 10 20
100 200 125
201 210 89
900 1000 174
1 10
10 1
1 10 20
10 1 20
5 25
70 54
38 250
5 25 24
70 54 113
38 250 128

Код программы

Решение

Алгоритм, описанный в условии задачи используется для построения сиракузской последовательности. Интересный факт — какое бы число не взять, в конце получаем единицу. Нам же надо посчитать сколько раз должен сработать алгоритм для подсчитывания «длины цикла». Считывая пару чисел из потока ввода я высчитывал «длину цикла» для каждого числа из заданного введенной парой промежутка. После чего сравнивал количество итераций для каждого такого числа и находил максимальное. И так для каждой пары чисел.

Ссылки

Ссылка на e-olymp.
Ссылка на Ideone

e-olymp 1780. Коды Грея

Задача

Коды Грея получили своё название по имени Франка Грея (Frank Gray), физика из Bell Telephone Laboratories, который в 1930-х годах изобрёл метод, в настоящее время используемый для передачи цветного телевизионного сигнала, совместно с существующими методами передачи и получения чёрно-белого сигнала; т.е. при получении цветного сигнала чёрно-белым приёмником изображение выводится оттенками серого цвета.

Хотя существует множество различных вариантов кодов Грея, рассмотрим только один: «двоичный отражённый (рефлексный) код Грея». Именно этот код обычно имеется в виду, когда говорят о неконкретном «коде Грея».

Отображённый двоичный код Грея строится следующим образом. Начинаем со строк [latex]0[/latex] и [latex]1[/latex], которые представляют соответственно целые числа [latex]0[/latex] и [latex]1[/latex].

0
1

Возьмём отражение этих строк относительно горизонтальной оси после приведённого списка и поместим [latex]1[/latex] слева от новых записей списка, а слева от уже имевшихся разместим [latex]0[/latex].

00
01
11
10

Таким образом получен отражённый код Грея для [latex]n = 2[/latex]. Чтобы получить код для [latex]n = 3[/latex], повторим описанную процедуру и получим:

000
001
011
010
110
111
101
100

При таком способе построения легко увидеть по индукции по [latex]n[/latex], что, во-первых, каждая из [latex]2^n[/latex] комбинаций битов появляется в списке, причём только один раз; во-вторых, при переходе от одного элемента списка к рядом стоящему изменяется только один бит; в-третьих, только один бит изменяется при переходе от последнего элемента списка к первому. Коды Грея, обладающие последним свойством называются циклическими, и отражённый код Грея обязательно является таковым.

Для каждого заданного числа [latex]k[/latex] вывести десятичное значение [latex]k[/latex]-го кода Грея.

Входные данные

Во входном файле содержится некоторый набор тестовых данных, каждое число [latex]k (0 < k < 10^{18})[/latex] в наборе задано в отдельной строке. Количество наборов данных в одном тесте не превышает [latex]10^5[/latex].

Выходные данные

Для каждого заданного числа [latex]k[/latex] вывести в отдельной строке десятичное значение [latex]k[/latex]-го кода Грея.

Входные данные Выходные данные
1 3
14
5
12
2
9
7
10
2 10
50
15
43

Код программы

Решение

Рассмотрим биты числа [latex]n[/latex] и биты числа [latex]G(n)[/latex]. Заметим, что [latex]i[/latex]-ый бит [latex]G(n)[/latex] равен единице только в том случае, когда [latex]i[/latex]-ый бит [latex]n[/latex] равен единице, а [latex]i+1[/latex]-ый бит равен нулю, или наоборот ([latex]i[/latex]-ый бит равен нулю, а [latex]i+1[/latex]-ый равен единице). Таким образом, имеем: [latex]G(n) = n \oplus (n>>1)[/latex], где [latex]\oplus[/latex] — операция «побитовое исключающее ИЛИ», а [latex]>>[/latex] — «побитовый сдвиг вправо».

Ссылки

Ссылка на e-olymp.
Ссылка на Ideone

e-olymp 143. Точка и треугольник

Точка и треугольник

Принадлежит ли точка [latex]O[/latex] треугольнику [latex]ABC[/latex]?

Входные данные

Содержит координаты точек [latex]O, A, B, C[/latex]. Числовые значения не превышают по модулю 100.

Выходные данные

Вывести 1, если точка [latex]O[/latex] принадлежит треугольнику [latex]ABC[/latex] и 0 в противоположном случае.

Входные данные Выходные данные
1 2 6 -9 3 8 1 5 11 1
2 -13 10 -12 5 99 80 17 13 0
3 98 -50 -87 7 5 3 23 17 0
4 5 15 7 12 5 3 2 54 1
5 2 2 3 1 1 3 9 11 1

Код программы

Решение

Для того, чтобы точка [latex]M[/latex] принадлежала треугольнику, заданному точками [latex]D([/latex]$x_{1}$,$y_{1}$[latex]), [/latex] [latex]E([/latex]$x_{2}$,$y_{2}$[latex]), [/latex][latex]F([/latex]$x_{3}$,$y_{3}$[latex]), [/latex] необходимо, чтобы псевдоскалярное (косое) произведение соответствующих векторов было больше либо равно нулю или же меньше либо равно нуля. Пользуясь формулой для косого произведения, запишем произведения векторов.
[$\overline{DE}$,$\overline{MD}$]=($x_{1}$-$x_{0}$) $\cdot$ ($y_{2}$-$y_{1}$)-($x_{2}$-$x_{1}$) $\cdot$ ($y_{1}$-$y_{0}$)
[$\overline{EF}$,$\overline{ME}$]=($x_{2}$-$x_{0}$) $\cdot$ ($y_{3}$-$y_{2}$)-($x_{3}$-$x_{2}$) $\cdot$ ($y_{2}$-$y_{0}$)
[$\overline{FD}$,$\overline{MF}$]=($x_{3}$-$x_{0}$) $\cdot$ ($y_{1}$-$y_{3}$)-($x_{1}$-$x_{3}$) $\cdot$ ($y_{3}$-$y_{0}$)
Если [$\overline{DE}$,$\overline{MD}$], [$\overline{EF}$,$\overline{ME}$] и [$\overline{FD}$,$\overline{MF}$] больше либо равно нулю или же меньше либо равно нуля, то точка принадлежит треугольнику.

 

Ссылки

Ссылка на Ideone
Ссылка на e-olymp

e-olymp 51. К-домино

Задача

ДоминоРаботник отдела технического контроля любил выбраковывать «доминошки», которые содержали одинаковые значения. Так как на предприятии, выпускающем [latex]K[/latex]-домино, этого не знали, к нему постоянно поступали претензии на сумму, равную стоимости [latex]K[/latex]-домино. Стоимость [latex]K[/latex]-домино составляла ровно столько гривен, сколько было в купленном покупателем наборе доминошек.Для того, чтобы его не уволили с работы, работник ОТК выбраковывал иногда не только все не любимые «доминошки», а несколько больше, но не более половины гарантированно выбраковыванных.Зная сумму претензии, пришедшей на предприятие, установите, какой из наборов [latex]K[/latex]-домино был куплен покупателем.

Входные данные

Единственное число [latex]S[/latex] – сумма претензии, пришедшей на предприятие, [latex]S ≤ 2000000000[/latex].

Выходные данные

Единственное число – индекс [latex]K[/latex] купленного покупателем [latex]K[/latex]-домино.

Входные данные Выходные данные
1 5 3
2 10 4
3 1000000 1414
4 555666777888 1054198
5 13 5

Код программы

Решение

[latex]K[/latex]-домино — набор домино с минимальным количеством точек на одной из половин доминошки.
Количество дублей, то есть количество точно выбракованных доминошек — [latex]k[/latex]+1. Общее количество доминошек [latex]k[/latex]-домино:$$(k+1){{k+2}\over{2}}$$
Пусть работник дополнительно выбраковывал [latex]e[/latex] доминошек. [latex]s[/latex] — сумма претензии, тогда имеем:

[latex]k+1+e+s= (k+1){{k+2}\over{2}}[/latex]  
[latex]k^2<=2s+1[/latex]  
[latex]k=[\sqrt{2s+1}][/latex]

Ссылки

Ссылка на e-olymp.
Ссылка на Ideone

e-olymp4491 Трое из Простоквашино

Условие задачи:
— Дядя Федор, Дядя Федор, я научился строить дерево отрезков.
— Подожди, Шарик, я занят.
— Ну Дядя Федор, ну смотри какой я код написал:

— Ну хорошо, Шарик, раз ты так хорошо разобрался с этой темой, давай я тебе дам массив из [latex]n[/latex] неотрицательных чисел и число [latex]k[/latex], а ты мне скажешь сколько существует таких пар [latex]l;r \left ( 1\leq l\leq r\leq n \right ),[/latex] что функция, вызванная следующим образом:

[latex]get[/latex]_[latex]max(1, 1, n, l, r)[/latex]

вернет значение равное [latex]k[/latex]. Можно считать, что перед этим была вызвана функция

[latex]build(1, 1, n)[/latex]

— Хорошо, Дядя Федор!

Входные данные:
В первой строке находятся число [latex]n \left ( 1\leq n\leq 10^{6} \right )[/latex] — количество элементов в массиве и [latex]k \left ( 1\leq k\leq 10^{9} \right )[/latex] — значение, которое должна вернуть функция. В следующей строке находится [latex]n[/latex] неотрицательных чисел, не превышающих [latex]10^{9}[/latex] — элементы массива.

Выходные данные:
Выведите единственное число – ответ на задачу.

Тесты:

Входные данные Выходные данные
[latex]n[/latex] [latex]k[/latex] [latex]elem[/latex]_[latex]tree[][/latex] [latex]ans[/latex]
5 3 1 2 3 2 3 11
10 6 1 4 7 6 2 4 1 9 6 6 7
20 15 5 2 4 7 15 3 15 20 31 15 15 1 23 4 8 15 1 2 15 6 43

Код программы:

Алгоритм решения:
Зададим отрезок массива, на котором обозначим границы [latex]\left [ left, right \right ][/latex]. Инициализируем изначально оба конца нулем. Рассмотрим некоторое [latex]elem\_tree\left [ i \right ][/latex] на нашем сегменте. Тогда если [latex]elem\_tree\left [ i \right ]=k[/latex], то на всем отрезке от [latex]left[/latex] до [latex]i[/latex] максимумом будет [latex]k[/latex]. Увеличим в таком случае [latex]left[/latex] и сделаем его равным [latex]i[/latex], причем [latex]right=0.[/latex] Если [latex]elem\_tree\left [ i \right ]\lt k[/latex], максимум будет также равен [latex]k[/latex]. В таком случае увеличиваем только [latex]right.[/latex] Если же [latex]elem\_tree\left [ i \right ]\gt k[/latex] , то [latex]left[/latex] устанавливаем равным [latex]i+1[/latex], а [latex]right[/latex] обнуляем.
Пройдя по всему массиву, мы должны получить значения [latex]left[/latex] равное количеству пар в которых максимум равен [latex]k[/latex], а [latex]right[/latex] должно стать равным нулю.

Код программы на Java
Условие задачи

e-olymp 1388. Заправки

Задача с сайта e-olymp.com.

Условие задачи

В стране n городов, некоторые из которых соединены между собой дорогами. Для того, чтобы проехать по одной дороге требуется один бак бензина. В каждом городе бак бензина имеет разную стоимость. Вам требуется добраться из первого города в n-ый, потратив как можно меньшее количество денег.

Входные данные

Сначала идет количество городов n (1 ≤ n ≤ 100), затем идет n чисел, i-ое из которых задает стоимость бензина в i-ом городе (все числа целые из диапазона от 0 до 100). Затем идет количество дорог m в стране, далее идет описание самих дорог. Каждая дорога задается двумя числами — номерами городов, которые она соединяет. Все дороги двухсторонние (то есть по ним можно ездить как в одну, так и в другую сторону); между двумя городами всегда существует не более одной дороги; не существует дорог, ведущих из города в себя.

Выходные данные

Выведите одно число — суммарную стоимость маршрута или -1, если добраться невозможно.

Тесты

Входные данные Выходные данные
1 4
1 10 2 15
4
1 2 1 3 4 2 4 3
3
2 4
1 10 2 15
0
-1
3 5
1 2 3 4 5
4
1 2 2 3 3 4 4 5
10

Код программы

Описание

Оптимальную стоимость маршрута будем находить по алгоритму Дейкстры. Цены на бензин в i-ом городе хранятся в массиве price. Минимальные стоимости маршрутов к каждому из городов хранятся в массиве distance, изначально все маршруты принимаем бесконечно дорогими. Кроме того, для хранения информации о том, был ли рассмотрен i-й город, используется массив used. Сам граф представляется в виде списка смежности. Для этого используется массив векторов graph. Если в итоге стоимость маршрута до целевого города осталась бесконечной, значит, пути к нему не существует, и выводится -1. Иначе выводится эта стоимость.

Код на ideone.com.

Засчитанное решение на e-olymp.com.

e-olymp 6129. Дек с защитой от ошибок

Задача с сайта e-olymp.com.

Условие задачи

Реализуйте структуру данных «дек». Напишите программу, содержащую описание дека и моделирующую работу дека, реализовав все указанные здесь методы. Программа считывает последовательность команд и в зависимости от команды выполняет ту или иную операцию. После выполнения каждой команды программа должна вывести одну строчку. Возможные команды для программы:

push_front

Добавить (положить) в начало дека новый элемент. Программа должна вывести ok.

push_back

Добавить (положить) в конец дека новый элемент. Программа должна вывести ok.

pop_front

Извлечь из дека первый элемент. Программа должна вывести его значение.

pop_back

Извлечь из дека последний элемент. Программа должна вывести его значение.

front

Узнать значение первого элемента (не удаляя его). Программа должна вывести его значение.

back

Узнать значение последнего элемента (не удаляя его). Программа должна вывести его значение.

size

Вывести количество элементов в деке.

clear

Очистить дек (удалить из него все элементы) и вывести ok.

exit

Программа должна вывести bye и завершить работу.

Гарантируется, что количество элементов в деке в любой момент не превосходит 100. Перед исполнением операций pop_front, pop_back, front, back программа должна проверять, содержится ли в деке хотя бы один элемент. Если во входных данных встречается операция pop_front, pop_back, front, back, и при этом дек пуст, то программа должна вместо числового значения вывести строку error.

 

Входные данные
Каждая строка содержит одну команду.

Выходные данные
Для каждой команды вывести в отдельной строке соответствующий результат.

Тесты

Входные данные Выходные данные
1 front
back
pop_back
pop_front
exit
error
error
error
error
bye
2 push_back 1
back
exit
ok
1
bye
3 push_back 1
push_front 2
back
front
size
clear
size
pop_back
exit
ok
ok
1
2
2
ok
0
error
bye

Код программы

Описание

Структура данных «дек» реализована в виде двусвязного списка. В классе MyDeque реализованы все требуемые методы. Те из них, после вызова которых, по условию, программа должна вывести некоторую строку, возвращают эту строку («ok» или «bye»). При попытке удалить или просмотреть элемент пустого дека создаётся и передаётся новый объект класса DequeException, наследующего класс Exception. В ходе работы функции main создаётся объект класса MyDeque, после чего читаются строки из входного потока и выполняются требуемые команды. В случае, если перехватывается исключение, выводится строка «error».

Код на ideone.com.

Засчитанное решение на e-olymp.com.

e-olimp 7365

Ссылка на оригинал задачи

Задача «Молоко и пирожок»

Ученикам первого класса дополнительно дают стакан молока и пирожок, если вес первоклассника менее 30 кг. В первых классах школы учится [latex]n[/latex] учеников. Стакан молока имеет емкость 200 мл, а упаковки молока – 0.9 л. Определить количество дополнительных пакетов молока и пирожков, необходимых каждый день.

Тесты:

Количество детей Вес Количество упаковок молока Количество пирожков
3 30 29 30 1 1
5 25 41 56 20 20 1 3
4 30 30 30 30 0 0
7 25 26 27 28 29 23 24 2 7

Код:

Алгоритм:

  1. Объявление и ввод значений переменных.
  2. Используем цикл for для подсчета необходимого количества пирожков.
  3. На основе предыдущих данных и округления в большую сторону (метод  Math.ceil ), подсчитываем необходимое количество пакетов молока.
  4. Окончание работы программы.

Работающая версия программы на Ideone.com

Ссылка на источник

A393a

Задача:

Даны натуральное число [latex]n[/latex], целочисленная квадратная матрица порядка [latex]n[/latex]. Получить [latex]{b}_{1}[/latex],…,[latex]{b}_{n},[/latex] где [latex]{b}_{i}[/latex] — это наименьшее из значений, элементов находящихся в начале [latex]i[/latex]-й строки матрицы до элемента, принадлежащего главной диагонали, включительно.

Тесты:

 
Вводимые данные Предполагаемый вывод Комментарий
4 4 3 2 1 4 3 2 1 Тест пройден
4 3 2 1
4 3 2 1
4 3 2 1
1 2 3 4 1 1 1 1 Тест пройден
1 2 3 4
1 2 3 4
1 2 3 4

Решение:

Считываем матрицу и проходим в цикле по каждой строке ведя поиск минимального элемента (но есть одно «Но»,  поиск ведется под главной диагональю матрицы).
У всех элементов находящихся под главной диагональю матрицы, включительно, индекс строк больше или равен индексу столбцов заданной матрицы. Учтем это при составлении программы.
Осталось только написать код с учетом вышеперечисленных особенностей задачи.

Код:

 

Версия программы на Ideone.com

Ссылка на источник

Шифровка

Условие задачи

Взята с сайта.
Мюллер много раз пытался поймать Штирлица с поличным, но тот всё время выкручивался. Как-то раз Штирлиц просматривал электронную почту. В это время незаметно вошел Мюллер и увидел, как у него на экране появился бессмысленный набор символов. «Шифровка», — подумал Мюллер. «UTF-8», — подумал Штирлиц.
Известно, что Штирлиц шифрует текст следующим образом:

1)Убирает все пробелы и знаки препинания.
2)Заменяет все подряд идущие одинаковые буквы на одну такую букву.
3)Многократно вставляет в произвольное место текста две одинаковых буквы.

Попробуйте восстановить текст, каким он был после второго шага. Для этого удалите из текста все пары одинаковых символов, добавленные на третьем шаге.

Входные данные

aaxxHuuuuelllnnloxxvvoo!

Выходные данные

Hello!

Решение с использованием функционала класса String

Решение с использованием функционала структуры данных ArrayList

Решение

Записываем строку в переменную типа $latex String$. Записываем ее в $latex ArrayList$ посимвольно. В следующем цикле добавляем проверку на индекс текущего элемента чтобы не выйти за пределы списка и проверяем совпадают ли ближайшие 2 символа, если да то удаляем их, если нет то переходим к следующему шагу цикла. По его окончанию выводим элементы списка.
Пример решения со строками на ideone.
Пример решения с списком на ideone.