A153.Потоковая обработка

Условие
Даны натуральное число [latex]n[/latex], действительный числа [latex]x[/latex], [latex]a_{n}, a_{n-1}, \ldots, a_{0}[/latex]. Вычислить используя схему Горнера, значение [latex]a_{n}{x}^{n} + a_{n-1}{x}^{n-1} + \cdots + a_{0}.[/latex] [latex]a_{n}{x}^{n} + a_{n-1}{x}^{n-1} + \cdots + a_{0} = \left( \ldots \left(a_{n}{x} + a_{n-1}\right)x + \cdots + a_{1}\right)x + a_{0}.[/latex]

$latex n$ $latex x$ $latex { a }_{ n }$ $latex { a }_{ n-1 }$ $latex { a }_{ n-2 }$ $latex { a }_{ n-3 }$ $latex s$
3 2 5 4 3 2 64
2 1 3 4 7 _ 14
3 0 3 4 12 8 8
3 5 0 10 12 8 318
1 5 2 1 _ _ 11

Решение
Начинаем с коэффициента с рядом с $latex X$-ом c максимальной степенью, у нас это элемент $latex { a }_{ n }$, мы последовательно умножаем его (коэффициент) на $latex X$, а потом прибавляем следующий считанный коэффициент и сохраняем полученное значение в переменной.
Это был пример решения для$latex n$=2 , если же$latex X$ > 2 , то мы должны выполнить алгоритм для $latex n$=2, после чего $latex X$ — 2 раз умножать полученное в переменной значение на $latex X$ и прибавлять последующий элемент.

Ideone.com

2 thoughts on “A153.Потоковая обработка

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *