KM17. Крестьянин на развилке

Задача из журнала «Квант» №4 1970 г.

Крестьянин, подойдя к развилке двух дорог, расходящихся под углом 60°, спросил: «Как пройти в село [latex]NN[/latex]?». Ему ответили: «Иди по левой дороге до деревни [latex]N[/latex] — это в восьми верстах отсюда,— там увидишь, что направо под прямым углом отходит большая ровная дорога,— это как раз дорога в [latex]NN[/latex]. А можешь идти другим путём: сейчас по правой дороге; как выйдешь к железной дороге,— значит, половину пути прошёл; тут поверни налево и иди прямо по шпалам до самого [latex]NN[/latex]». — «Ну, а какой путь короче-то будет?» — «Да всё равно, что так, что этак, никакой разницы.» И пошёл крестьянин по правой дороге. Сколько вёрст ему придётся идти до [latex]NN[/latex]? Больше десяти или меньше? А если идти от развилки до [latex]NN[/latex] напрямик? (Все дороги прямые)

Более лаконичная версия:
Крестьянин стоит на развилке дорог, которые расходятся под углом 60°, и хочет попасть в село [latex]NN[/latex]. Выбрав левую дорогу, он должен будет пройти n вёрст прямо, затем повернуть направо под прямым углом и идти до [latex]NN[/latex]. Выбрав правую, он должен будет преодолеть участок некоторой длины прямо, затем повернуть налево и пройти такой же по длине участок. При этом известно, что длины левой и правой дорог одинаковы. От нас требуется найти длину пути по одной из дорог и длину пути напрямик.

Входные данные:

Длина пути от развилки до [latex]N[/latex].

Выходные данные:

Длины путей по дороге и напрямик.

Тесты

Входные данные Выходные данные
[latex]n[/latex] [latex]{ s }_{ 1 }[/latex] [latex]{ s }_{ 2 }[/latex]
1 0 0 0
2 8 11.0416 8.55871
3 0.5 0.690101 0.534919
4 21 28.9843 22.4666
5 13.45 18.5637 14.3893

Решение

Код можно увидеть и проверить его правильность тут: ideone

Пояснение

Обозначим развилку как [latex]A[/latex] как, село [latex]B[/latex], место пересечения правой дороги с рельсами как [latex]D[/latex], и проведём [latex]DH \bot AB[/latex] и [latex]DK \bot BC[/latex].

Пусть [latex]AD = 2x[/latex], тогда  [latex]AH = x[/latex]; Из треугольника [latex]AHD[/latex]: [latex]BK = DH = x\cdot\sqrt { 3 }[/latex];

[latex]KC=KB-BC=n+x \cdot \left(\sqrt{3}-4\right)[/latex].
Из треугольника [latex]CKD[/latex] по теореме Пифагора: [latex]{KC}^{2}+{KD}^{2}={CD}^{2}[/latex]. Подставив значения, раскрыв скобки и проведя математические преобразования, получим квадратное уравнение [latex]{x}^{2}\cdot (-4\sqrt{3}+8)-x \cdot n \cdot (\sqrt{3}-5)+{n}^{2}=0[/latex].
Найдём дискриминант [latex]D={n}^{2}\cdot(6\sqrt{3}-4)[/latex]. [latex]KD=n-x[/latex] и [latex]KD > 0[/latex], значит, [latex]n-x > 0[/latex] и [latex]x < n[/latex]. Для первого из корней полученного квадратного уравнения это условие не выполняется, соответственно, мы имеем лишь один корень. Найдя его, мы найдём половину длины [latex]AD[/latex]. Выведем формулу для его расчёта:[latex]x=\frac{n\cdot(5-\sqrt{3}-\sqrt {6\cdot\sqrt {3}-4 })}{8\cdot (2-\sqrt {3})}[/latex] Тогда длина пути по дороге будет равна [latex]4\cdot x[/latex], а длину пути напрямик мы найдём из треугольника [latex]ABC[/latex] по теореме Пифагора: [latex]{s}_{2}=\sqrt{2\cdot ({n}^{2}-4x\cdot n+8{n}^{2})}[/latex].

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *