e-olymp 798. Платформы

Условие

В старых играх можно столкнуться с такой ситуацией. Герой прыгает по платформам, висящим в воздухе. Он должен перебраться от одного края экрана до другого. При прыжке с платформы на соседнюю у героя уходит $|y_{2} — y_{1}|$ энергии, где $y_{1}$ и $y_{2}$ — высоты, на которых расположены эти платформы. Кроме того, есть суперприём, позволяющий перескочить через платформу, но на это затрачивается $3\cdot\left|y_{2} — y_{1}\right|$ энергии.

Известны высоты платформ в порядке от левого края до правого. Найдите минимальное количество энергии, достаточное, чтобы добраться с $1$-ой платформы до $n$-ой (последней) и список (последовательность) платформ, по которым нужно пройти.

Входные данные

Первая строка содержит количество платформ $n  (2 \leqslant n \leqslant 100000)$, вторая $n$ целых чисел, значения которых не превышают по модулю $400$ — высоты платформ.

Выходные данные

В первой строке выведите минимальное количество энергии. Во второй — количество платформ, по которым нужно пройти, а в третьей выведите список этих платформ.

Тесты

Ввод Вывод
1 4
1 2 3 30
29
4
1 2 3 4
2 2
7 23
16
2
1 2
3 5
0 1 0 1 0
0
3
1 3 5

Код

Решение

Для решения данной задачи используем несколько массивов для хранения значений затраченной энергии и подсчета платформ. Начнём с энергии. По условию у нас есть два приема для прыжка с одной платформы на другую:

  1. Прыжок с платформы на соседнюю. Затрачивается $|y_{2} — y_{1}|$ энергии. В дальнейшем для упрощения этот вид прыжка будет называться «обычным».
  2. Суперприём — прыжок, позволяющий перескочить через платформу. В этом случае затрачивается $3·|y_{2} — y_{1}|$ энергии. Далее по тексту этот прием будет называться «суперпрыжок».

Нам необходимо проверить какой прием эффективнее. Для этого мы сравниваем сумму затраченной энергии при «обычных» прыжках с первой платформы до третей, с энергией, затраченной при «суперпрыжке» с первой сразу на третью. Этот алгоритм мы рассматриваем для каждой платформы, начиная с $3$ и до последней. Последнее значение, которое мы получим в ходе применения наиболее выгодного приема, и будет являться минимальным количеством энергии.

Параллельно подсчету энергии необходимо нумеровать платформы, на которые мы прыгнули. Опять же, если «суперпрыжок» с первой на третью оказался выгоднее, чем «обычные» прыжки с первой до третей, то третья платформа окажется второй по счету, на которую мы прыгнули. Продолжая эти рассуждения мы подсчитываем нужные нам платформы.

Чтобы вывести список платформ, по которым мы прошли, мы записываем в новый массив номера платформ начиная с последнего значения массива platforms[amount_of_pltf]. Там же, с помощью счетчика считаем общее количество платформ.

Ссылки

e-olymp 4020. Культ-орки на лестнице

Задача

В Летней Кинематографической Школе пришло время обеда и эльф Коля поспешил в столовую. Однако для того, чтобы попасть в столовую, Коле нужно подняться по длинной лестнице, а на каждой её ступеньке в это время суток стоит по культ-орку. Каждый культ-орк разрешает Коле пройти по своей ступеньке только после того, как Коля запишется на мероприятие, которое этот культ-орк организует. При этом никакие два культ-орка не проводят одно и то же мероприятие, и все мероприятия проходят в разное время.

Коля — честный эльф, и если уж он запишется на какую игру или конкурс, то потом обязательно придёт поучаствовать. Однако Коля хочет потратить как можно меньше времени на развлечения, ведь иначе ему некогда будет дорешивать кинематографические задачки. К счастью, Коле не надо наступать на каждую ступеньку, он может перепрыгнуть через несколько. Коля хочет узнать, какое минимальное количество времени ему придётся распланировать за один проход по лестнице до столовой.

Входные данные:

В первой строке вводятся два числа $n$ и $k$ $(1 \leqslant n \leqslant 10000, 0 \leqslant k \leqslant 20)$, $n$ — количество ступенек на лестнице, $k$ — максимальное количество ступенек, через которые Коля может перепрыгнуть за один прыжок (то есть, например, на первом шаге Коля может прыгнуть на $(k + 1)$-ую или более низкие ступеньки). Во второй строке вводятся $n$ чисел: $i$-ое число указывает на длительность в минутах того мероприятия, которое проведёт культ-орк, стоящий на $i$-ой ступеньке. Каждое мероприятие не может длиться более $24$ часов. Ступеньки нумеруются снизу вверх, ступенькой номер $n$ считается весь этаж столовой.

Выходные данные:

Выведите одно число — минимальное количество минут, которое Коле придётся распланировать.

Тесты

Входные данные  Выходные данные
1 5 2
7 3 9 2 11
14
2 6 1
59 32 4 21 5 1
42
3 10 3
40 55 85 29 158 105 115 281 320 10
144
4 15 4
67 20 85 12 345 9 234 115 190 47 5 17 23 89 130
156
5 4 0
100 20 31 49
200

Код программы

Решение

Для каждой ступеньки будем считать минимальное время, которое она отнимет у эльфа, учитывая сколько ступенек можно пропустить (от $0$ до $k + 1$). То есть будем прыгать со ступенек пониже (если это возможно) и сравнивать значения на каждой. Под значением подразумевается сумма уже найденного значения на более низкой ступеньке и времени, которое отнимет мероприятие $i$-ой ступеньки. Таким образом мы узнаем, какие ступеньки выгодно перепрыгнуть. $0$-я ступенька займет $0$ минут, так как эльф не потратит время. Изначально за минимум на ступеньках до $k + 1$ включительно можно взять время мероприятия соответствующей ступеньки, для остальных — сумму значения предыдущей ступеньки и времени мероприятия данной ступеньки. В случае, если эти значения не минимальные, они заменятся на подходящие.
Ответом будет значение на последней ступеньке, так как к ней будет проложен путь, который «займет» минимум времени эльфа на развлечения.

Ссылки

Условие задачи на e-olymp
Код программы на ideone

e-olimp 7848. Переставить соседние

Задача

Задан массив из $n$ целых чисел. Переставьте соседние элементы массива ($a_{0}$ с $a_{1}$, $a_{2}$ с $a_{3}$ и так далее). Если элементов нечетное количество, то последний элемент следует оставить на своем месте.

Входные данные

В первой строке записано число $n$. В следующей строке записано $n$ целых чисел. Все числа по модулю не превышают $100$.

Выходные данные

Вывести обновленный массив.

Тесты

Входные данные Выходные данные
7
3 5 -7 7 5 -9 -4
5 3 7 -7 -9 5 -4
8
-9 81 27 -38 2 6 -56 -21
81 -9 -38 27 6 2 -21 -56
2
25 -76
-76 25
3
55 44 33
44 55 33
1
99
99

Код

Решение

Будем переставлять соседние элементы массива следующим образом: arr[1] с arr[0], arr[3] с arr[2] и так далее до конца массива (т.е. каждый нечетный по счету элемент меняем местами с предыдущим). При этом совершенно неважно, четное кол-во элементов или нечетное.

Ссылки

Условие задачи на E-Olymp
Код задачи на Ideone

e-olymp 9036. Комбинация игральных костей

Задача

Подсчитайте количество способов, которыми можно получить сумму $n$ бросая игральный кубик один или несколько раз. Каждый бросок дает результат между 1 и 6.

Например, если $n = 3$, то имеется 4 способа:
1 + 1 + 1
1 + 2
2 + 1
3

Входные данные

Одно целое число $n$ $(1 \leqslant n \leqslant 10^6)$.

Выходные данные

Выведите количество способов по модулю $10^9+7$.

Тесты

Входные данные  Выходные данные
1 1 1
2 3 4
3 5 16
4 6 32
5 8 123

Код программы

Решение

Создадим массив на $n+1$ элемент. В который мы сразу запишем количество перестановок для сумм 1,2..,6. Для остальных случаев, когда $n>7$ воспользуемся следующей идеей. Будем вычислять количество перестановок для сумм, начиная с 7 до тех пор, пока не дойдем до заданного нам $n$. Будем делать это по такой формуле $a_{i}=a_{i-1}+a_{i-2}+a_{i-3}+a_{i-4}+a_{i-5}+a_{i-6}$  . Для первых шести сумм вычисляем по этой же формуле, с учетом, что $0 < i-k \; (1 \leqslant k \leqslant 6)$ и добавляя еще 1 перестановку, так как мы можем получить сумму ( $i$ ), подбросив кубик 1 раз. Рассмотрим для $n=7$. Чтобы получить 7 достаточно подбросить кубик ещё один раз, так как мы знаем количество для $n$ от 1 до 6. Если выпадет 1, то остается $a_{6}$ возможных перестановок, если выпадет 2, то остается  $a_{5}$  и так далее. Затем нам требуется просуммировать, так как кубик может выпасть 6 способами, как было сказано ранее. Соответственно для $n=8$ количество комбинаций увеличится на  $a_{7}$ и уменьшится на  $a_{1}$, так как кубик имеет только 6 граней.

Ссылки

Условие задачи на e-olymp

Код программы на ideone

e-olymp 1661. Рюкзак Алладина

Условие

Попав в пещеру с сокровищами, наш Алладин не стал брать старую почерневшую лампу. Он кинулся собирать в свой рюкзак золотые монеты и драгоценные камни. Он бы, конечно, взял все, но чудес не бывает — слишком большой вес рюкзак может просто не выдержать.

Много раз он выкладывал одни вещи и на их место помещал другие, пытаясь как можно выше поднять стоимость взятых драгоценностей.

Требуется определить максимальную стоимость груза, который Алладин может поместить в свой рюкзак.

Будем считать, что в пещере имеются предметы $n$ различных типов, количество предметов каждого типа не ограничено. Максимальный вес, который может выдержать рюкзак, равен $w$. Каждый предмет типа $i$ имеет вес $w_{i}$ и стоимость $v_{i}$ $(i = 1, 2, \ldots, n)$.

Входные данные

В первой строке содержится два натуральных числа $w$ и $n$ $(1 \leqslant w \leqslant 250, 1 \leqslant n \leqslant 35)$ — максимальный вес предметов в рюкзаке и количество типов предметов. Следующие $n$ строк содержат по два числа $w_{i}$ и $v_{i}$ $(1 \leqslant w_{i} \leqslant 250, 1 \leqslant v_{i} \leqslant 250)$ — вес предмета типа $i$ и его стоимость.

Выходные данные

Выведите максимальную стоимость груза, вес которого не превышает $w$.

Тесты

Входные данные Выходные данные
1 10 2
5 10
6 19
20
2 250 35
187 100
28 109
245 142
123 83
237 78
36 172
15 248
90 24
181 137
40 233
8 99
231 128
79 132
43 217
156 104
45 191
130 113
105 225
206 5
26 120
26 119
64 138
23 147
19 202
79 54
149 185
158 79
209 88
110 133
235 209
188 230
15 220
107 164
235 137
60 167
4067
3 35 4
20 4
1 2
10 8
7 6
70

Программный код

Решение

Допустим $w = 9$, $n = 2$, первый предмет $w_{1} = 3$, $n_{1} = 4$, а второй предмет $w_{2} = 2$, $n_{2} = 1$. После того как считаем условие в два одномерных или один двумерный массив (как вам удобнее). Создадим одномерный массив в котором его размер будет равен $w$ и первый элемент будет равен 0, а остальные будут равны минус бесконечности или как в нашем случае (в коде) -1, как показано на (рис. 1). И дальше как показано на (рис. 2) начиная с элемента с номером веса предмета мы прибавляем его стоимость к стоимости предыдущей как показано в коде s[j] = s[j - WeiCos[i][0]] + WeiCos[i][1];, если прошлый не минус бесконечность. И так же со вторым элементом, когда они пересекаются с первым мы их сравниваем и вписываем в массив, больший. И в самом конце проходим заново массив и выбираем самый больший элемент, где бы он ни был как показано на (рис. 3). И таким образом на последних позициях которые равняются весу, будут записаны самые дорогие комбинации, благодаря записи самых дорогих элементов в ячейки.

Ссылки:
Задача на e-olymp
Код на OnlineGDB
Код на Ideone
Засчитанное решение на e-olymp

e-olymp 841. Спираль

Условие

Вывести квадрат, состоящий из $N \times N$ клеток, заполненных числами от $1$ до $N^{2}$ по спирали.

Входные данные

В первой строке находится единственное число $N (2 \leq N \leq 100)$.

Выходные данные

Выводится $N$ строк по $N$ чисел, разделённых пробелами. Не допускается начинать спираль в ином, кроме верхнего левого, углу, закручивать спираль против часовой стрелки или изнутри наружу.

Тесты

Входные данные Выходные данные
1 3 1 2 3
8 9 4
7 6 5
2 4 1 2 3 4
12 13 14 5
11 16 15 6
10 9 8 7
3 5 1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
4 10 1 2 3 4 5 6 7 8 9 10
36 37 38 39 40 41 42 43 44 11
35 64 65 66 67 68 69 70 45 12
34 63 84 85 86 87 88 71 46 13
33 62 83 96 97 98 89 72 47 14
32 61 82 95 100 99 90 73 48 15
31 60 81 94 93 92 91 74 49 16
30 59 80 79 78 77 76 75 50 17
29 58 57 56 55 54 53 52 51 18
28 27 26 25 24 23 22 21 20 19

Программный код

Решение

Для того чтобы решить эту задачу нам нужно определить способ заполнения. Первым делом, если $N$ — нечетное, то находим центр матрицы и заполняем его числом $N \times N $ a[(n / 2)][(n / 2)] = (n * n);. В условии написано, что “Не допускается начинать спираль в ином, кроме верхнего левого углу, закручивать спираль против часовой стрелки или изнутри наружу.”, то есть начинать мы будем с верхнего левого угла. Для этого мы сделаем цикл for(int i = 0; i < (n / 2); i++); , в котором сделаем 4 такта. Каждый такт заполняет определенную часть матрицы:

    • 1 такт – заполняет верхнюю грань слева направо;
    • 2 такт – заполняет правую грань сверху вниз;
    • 3 такт – заполняет нижнюю грань справа налево;
    • 4 такт – заполняет левую грань снизу вверх, как показано на рисунке ниже.

Выводим все как обычную матрицу, но с одним условием, после последнего элемента не должно стоять пробела, поэтому я вывел последний элемент отдельно и после него осуществил переход на новую строку.


Ссылки:
Задача на e-olymp
Код на OnlineGDB
Код на Ideone
Засчитанное решение на e-olymp

А701б

Условие задачи

Даны квадратная матрица [latex]A[/latex] порядка [latex]n[/latex] и вектор [latex]b[/latex] c [latex]n[/latex] элементами. Получить вектор \[A^{2} \cdot b\]

Алгоритм решения

Считываем матрицу. Возводим ее в квадрат ( перемножение матрицы осуществляется при помощи циклов). Считываем вектор. Умножаем матрицу на вектор. Выводим ответ.

Фактически, умножение матриц пишется по определению. Сумма произведений элементов строки на элементы столбцов.

Тесты

[latex]n[/latex] [latex]A[/latex] [latex]b[/latex] Результат
3 1 1 1
1 1 1
1 1 1
5 5 5 45 45 45
5 1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5
8 1 8 1 8 8 4 72 16 200
2 1 0
0 1
2 2 2 2

Код программы

Код на ideone.com.

Задача оригинал на языке С++(другого автора) на java.mazurok.com.

e-olymp 595. Новый Лабиринт Амбера

Условие задачи

Как-то Корвину – принцу Амбера, по каким-то важным делам срочно понадобилось попасть в самую далекую тень, которую он только знал. Как всем известно, самый быстрый способ путешествия для принцев Амбера – это Лабиринт Амбера. Но у Корвина были настолько важные дела, что он не хотел тратить время на спуск в подземелье (именно там находится Амберский Лабиринт). Поэтому он решил воспользоваться Новым Лабиринтом, который нарисовал Дворкин. Но этот Лабиринт не так прост, как кажется…

Новый Лабиринт имеет вид последовательных ячеек, идущих друг за другом, пронумерованных от [latex]1[/latex] до [latex]N[/latex]. Из ячейки под номером [latex]i[/latex] можно попасть в ячейки под номерами [latex]i+2[/latex] (если [latex]i+2 ≤ N[/latex]) и [latex]i+3[/latex] (если [latex]i+3 ≤ N[/latex]). На каждой ячейке лежит какое-то количество золотых монет [latex]{ k }_{ i }[/latex]. Для того чтобы пройти лабиринт нужно, начиная ходить из-за границ лабиринта (с нулевой ячейки) продвигаться по выше описанным правилам, при этом подбирая все монетки на ячейках, на которых вы делаете промежуточные остановки. Конечная цель путешествия – попасть на ячейку с номером [latex]N[/latex]. Дальнейшее путешествие (в любое место Вселенной) возможно лишь тогда, когда достигнув ячейки с номером [latex]N[/latex], вы соберете максимально количество монеток. Напишите программу, которая поможет Корвину узнать, какое максимальное количество монеток можно собрать, проходя Новый Лабиринт Амбера.

Входные данные

В первой строке входного файла содержится натуральное число [latex]N (2 ≤ N ≤ 100000)[/latex], а во второй [latex]N[/latex] целых чисел, разделенных одним пробелом, [latex]{ k }_{ i }[/latex] – количество монеток, лежащих в ячейке с номером [latex]i[/latex] [latex](0 ≤ i ≤ 1000)[/latex].

Выходные данные

В выходной файл вывести одно целое число – максимальное количество монеток, которое можно собрать, проходя лабиринт.

Тесты

Входные данные Выходные данные
1 5
1000 2 3 1 3
6
2 2
1 2
2
3 4
1 3 100 0
3

Решение с использованием цикла

Код программы

Описание

Для хранения количества монет в каждой ячейке лабиринта используем массив [latex]dp[/latex] длиной [latex]n+1[/latex] элементов. При этом каждой ячейке лабиринта соответствует ячейка массива с тем же индексом, а нулевой элемент массива понимаем как точку перед входом в лабиринт. В цикле считываем количество монет в каждой ячейке, после чего обнуляем значение нулевого элемента массива, поскольку ячейка, соответствующая ему, находится вне лабиринта, и первого, поскольку в ячейку, соответствующую ему, невозможно попасть никаким образом. Далее в цикле для каждой ячейки лабиринта находим, какое максимальное количество монет может быть у Корвина после её посещения. В ячейку с номером [latex]i[/latex] он может попасть или из ячейки с номером [latex]i-2[/latex], или из ячейки с номером [latex]i-3[/latex]. При этом он несёт с собой все собранные ранее монеты, и добавляет к ним те, что находятся в данной ячейке. Таким образом, формула для нахождения максимального количества монет после посещения [latex]i[/latex]-й ячейки имеет вид [latex]dp[i] = dp[i] + max(dp[i-2], dp[i-3])[/latex], и ответ к задаче хранится в [latex]n[/latex]-й ячейке массива. Дополнительно требуется проводить проверку на выход за границы массива.

Код на ideone.com.

Условие задачи на e-olymp.com.

e-olymp 1872. Снеговики

Задача

Зима. 2012 год. На фоне грядущего Апокалипсиса и конца света незамеченной прошла новость об очередном прорыве в областях клонирования и снеговиков: клонирования снеговиков. Вы конечно знаете, но мы вам напомним, что снеговик состоит из нуля или более вертикально поставленных друг на друга шаров, а клонирование — это процесс создания идентичной копии (клона).

В местечке Местячково учитель Андрей Сергеевич Учитель купил через интернет-магазин «Интернет-магазин аппаратов клонирования» аппарат для клонирования снеговиков. Теперь дети могут играть и даже играют во дворе в следующую игру. Время от времени один из них выбирает понравившегося снеговика, клонирует его и:

  • либо добавляет ему сверху один шар;
  • либо удаляет из него верхний шар (если снеговик не пустой).

Учитель Андрей Сергеевич Учитель записал последовательность действий и теперь хочет узнать суммарную массу всех построенных снеговиков.

Входные данные

Первая строка содержит количество действий $n (1 ≤ n ≤ 200000)$. В строке номер $i + 1$ содержится описание действия:

  • $t m$ — клонировать снеговика номер $t (0 ≤ t < i)$ и добавить сверху шар массой $m (0 < m ≤ 1000)$;
  • $t 0$ — клонировать снеговика номер $t (0 ≤ t < i)$ и удалить верхний шар. Гарантируется, что снеговик не пустой.

В результате действия $i$, описанного в строке $i + 1$ создается снеговик номер $i$. Изначально имеется пустой снеговик с номером ноль.

Все входные числа целые.

Выходные данные

Выведите суммарную массу построенных снеговиков.

Тесты

Входные данные Выходные данные
8
0 1
1 5
2 4
3 2
4 3
5 0
6 6
1 0
74
4
0 3
1 2
2 1
1 1
18
2
0 1
1 5
7
5
1 2
3 4
5 5
1 7
5 6
26

Код задачи

 

Решение задачи

Считываем n  — количество действий. Задаем двухмерный массив размером [n+1][2] . Указываем значение первого элемента равное $0$ и нулевого элемента равного $-1$, чтобы он ни на что не ссылался в начале.  В цикле считываем номер снеговика, которого нужно клонировать и массу шара, которую нужно добавить. Если масса шара равна $0$, то мы клонируем снеговика и убираем последний его шар, ссылаясь на снеговика в котором этого шара еще не было. Если же масса шара не равно $0$, то мы клонируем снеговика и добавляем ему шар массой $m$. Во второй ячейке указываем предка с которого строится новый снеговик. Выводим общую массу снеговиков.

Ссылки

Условие задачи на e-olymp.com
Решение задачи на ideone.com

e-olymp 922. Сдвинь элементы

Условие задачи
Задан массив целых чисел длины $n$. Сдвинуть элементы массива вправо циклически на $1$ шаг.
Входные данные
В первой строке задано количество элементов массива $n$$(n ≤ 100)$ . Во второй строке заданы сами элементы массива, значение каждого из которых по модулю не превышает $100$.
Выходные данные
В одной строке вывести $n$ чисел — новые значения элементов массива.
Тесты

Входные данные Выходные данные
4
1 2 3 4 5
4 1 2 3
6
3 3 3 3 3 1
1 3 3 3 3 3
2
1 2
2 1

Код программы

Решение задачи
Создаем динамический массив, размером в number элементов. Создаем переменную last, в которой записан последний элемент массива. Создаём цикл, в котором меняется каждый элемент массива с предыдущим. Кладем на $1$ место (точнее $0$ место) бывший последний элемент массива.
Выводим массив.
Ссылки
Задача на сайте e-olymp
Код решения в Ideone