e-olymp 2270. Поиск цикла

Задача

Дан ориентированный невзвешенный граф. Необходимо определить есть ли в нём циклы, и если есть, то вывести любой из них.

Входные данные

В первой строке находятся два натуральных числа $n$ и $m$ $($$1$ $\leqslant$ $n$ $\leqslant$ $10$$5$$, $$1$ $\leqslant$ $m$ $\leqslant$ $10$$5$$)$ — количество вершин и ребер в графе соответственно. Далее в $m$ строках перечислены рёбра графа. Каждое задаётся парой чисел — номерами начальной и конечной вершин соответственно.

Выходные данные

Если в графе нет цикла, то вывести «NO», иначе вывести «YES» и затем перечислить вершины в порядке обхода цикла.

Тесты

Входные данные

Выходные данные

1
2 2
1 2
1 2
NO
2 2 2
1 2
2 1
YES
1 2
3 6 7
1 2
1 5
2 3
2 4
4 6
6 5
5 2
YES
2 4 6 5
4 6 6
1 3
2 4
3 4
1 2
3 5
3 6
NO
5 4 4
1 3
4 2
2 3
3 4
YES
3 4 2

Решение

Для решения данной задачи воспользуемся поиском в глубину. Также будем отмечать вершины в различными цветами ($0$ (белый) — мы еще не посещали вершину, $1$ (серый) — посетили вершину и не вышли из нее (зациклились), $2$ (черный) — посетили вершину и вышли из неё).

В векторе $graph$ будем хранить сам граф, для проверки на цикличность воспользуемся вектором $visited$, так же будем хранить порядок обхода графа в векторе $path$. Так как по условию, в случае нескольких циклов, необходимо вывести любой, то мы будем находить первый и на этом останавливаться, для этого заведем переменную $flag$, которая равна 1, если цикл уже найден, и равна 0, если цикл еще не найден. В векторе $visited$ будем окрашивать вершину в один из цветов. Если мы захотим посетить $1$ (серую) вершину, то это будет означать, что мы отыскали цикл в этой вершине, тогда устанавливаем $flag = 1$.

Осталось лишь вывести его на экран. Для этого воспользуемся вектором $path$, в котором последний элемент — вершина, в которой цикл. Ищем предпоследнее вхождение этой вершины в векторе $path$ и выводим сам цикл.

Ссылки

Условие задачи на e-olymp

Код программы на ideone

e-olymp 977. Дерево?

Задача

Неориентированный граф без петель и кратных ребер задан матрицей смежности. Определить, является ли этот граф деревом.

Входные данные

Первая строка содержит количество вершин графа $n \left (1 \leq n \leq 100 \right).$ Далее записана матрица смежности размером $n × n$, в которой $1$ обозначает наличие ребра, $0$ — его отсутствие. Матрица симметрична относительно главной диагонали.

Выходные данные

Выведите сообщение YES, если граф является деревом, и NO в противном случае.

Тесты

Входные данные Выходные данные
[latex]3 \\ 0 \ 1 \ 0 \\ 1 \ 0 \ 1 \\ 0 \ 1 \ 0[/latex] [latex]YES[/latex]
[latex]2 \\ 0 \ 1 \\ 1 \ 0[/latex] [latex]YES[/latex]
[latex]4 \\ 0 \ 0 \ 0 \ 1 \\ 0 \ 0 \ 1 \ 0 \\ 0 \ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \ 0[/latex] [latex]NO[/latex]
[latex]1 \\ 0[/latex] [latex]YES[/latex]

Код программы

Решение задачи

Считываем граф в ArrayList<ArrayList>. Далее выбираем любую вершину и запускаем из нее своего рода dfs. Заключается он в том, что мы идем к потомкам текущей вершины, попутно смотря были ли мы здесь. Если были, завершаем процесс, так как мы нашли цикл (граф, содержащий цикл, не является деревом). При этом мы не идем от потомка к предку. В конце проверяем обошли ли мы все вершины и не встречались ли нам циклы.

Ссылки

Условие задачи на e-olymp
Код решения

e-olymp 4000. Обход в глубину

Задача

Дан неориентированный невзвешенный граф, в котором выделена вершина. Вам необходимо найти количество вершин, лежащих с ней в одной компоненте связности (включая саму вершину).

Входные данные

В первой строке содержится количество вершин графа $n$ и выделенная вершина $s$ $\left (1 \leq s \leq n \leq 100 \right).$ В следующих n строках записано по n чисел — матрица смежности графа, в котрой цифра «$0$» означает отсутствие ребра между вершинами, а цифра «$1$» — его наличие. Гарантируется, что на главной диагонали матрицы всегда стоят нули.

Выходные данные

Выведите искомое количество вершин.

Тесты

Входные данные Выходные данные
3 1
0 0 1
0 0 0
1 0 0
2
4 2
0 1 0 0
1 0 0 1
0 0 0 1
0 1 1 0
4
6 2
0 1 0 0 0 1
1 0 0 0 0 1
0 0 0 1 1 0
0 0 1 0 0 0
0 0 1 0 0 0
1 1 0 0 0 0
3
4 2
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1
5 3
0 1 0 0 1
1 0 1 0 1
0 1 0 1 0
0 0 1 0 1
1 1 0 1 0
5

Код программы

Решение задачи

Для хранения графа воспользуемся списками смежности. Реализуем стандартный поиск в глубину. Пусть $c$ количество вершин в компоненте графа. Изначально $c = 0.$ При посещении очередной, не посещенной ранее вершины, значение $c$ увеличивается на один. Таким образом, при полном обходе компоненты графа, $c$ будет искомым числом.

Ссылки

Условие задачи на e-olymp
Решение на e-olymp
Код решения на Ideone